Files
DiLight/firmware/Drivers/vl53l0x/VL53L0X.h

252 lines
10 KiB
C

#ifndef VL53L0X_h
#define VL53L0X_h
#include "stm32g0xx_hal.h"
//------------------------------------------------------------
// For quick and dirty C++ compatibility
//------------------------------------------------------------
#define bool uint8_t
#define true 1
#define false 0
//------------------------------------------------------------
// Defines
//------------------------------------------------------------
// I²C port handle
#define TOF_I2C hi2c1
extern I2C_HandleTypeDef TOF_I2C;
// Pins
#define TOF_XSHUT_PORT Sens_SHUT_GPIO_Port
#define TOF_XSHUT_PIN Sens_SHUT_Pin
#define TOF_INT_PORT Sens_INT_GPIO_Port
#define TOF_INT_PIN Sens_INT_Pin
// I use a 8-bit number for the address, LSB must be 0 so that I can
// OR over the last bit correctly based on reads and writes
#define ADDRESS_DEFAULT 0b01010010
// Record the current time to check an upcoming timeout against
#define startTimeout() (g_timeoutStartMs = HAL_GetTick())
// Check if timeout is enabled (set to nonzero value) and has expired
#define checkTimeoutExpired() (g_ioTimeout > 0 && ((uint16_t)HAL_GetTick() - g_timeoutStartMs) > g_ioTimeout)
// Decode VCSEL (vertical cavity surface emitting laser) pulse period in PCLKs
// from register value
// based on VL53L0X_decode_vcsel_period()
#define decodeVcselPeriod(reg_val) (((reg_val) + 1) << 1)
// Encode VCSEL pulse period register value from period in PCLKs
// based on VL53L0X_encode_vcsel_period()
#define encodeVcselPeriod(period_pclks) (((period_pclks) >> 1) - 1)
// Calculate macro period in *nanoseconds* from VCSEL period in PCLKs
// based on VL53L0X_calc_macro_period_ps()
// PLL_period_ps = 1655; macro_period_vclks = 2304
#define calcMacroPeriod(vcsel_period_pclks) ((((uint32_t)2304 * (vcsel_period_pclks) * 1655) + 500) / 1000)
// register addresses from API vl53l0x_device.h (ordered as listed there)
enum regAddr {
SYSRANGE_START = 0x00,
SYSTEM_THRESH_HIGH = 0x0C,
SYSTEM_THRESH_LOW = 0x0E,
SYSTEM_SEQUENCE_CONFIG = 0x01,
SYSTEM_RANGE_CONFIG = 0x09,
SYSTEM_INTERMEASUREMENT_PERIOD = 0x04,
SYSTEM_INTERRUPT_CONFIG_GPIO = 0x0A,
GPIO_HV_MUX_ACTIVE_HIGH = 0x84,
SYSTEM_INTERRUPT_CLEAR = 0x0B,
RESULT_INTERRUPT_STATUS = 0x13,
RESULT_RANGE_STATUS = 0x14,
RESULT_CORE_AMBIENT_WINDOW_EVENTS_RTN = 0xBC,
RESULT_CORE_RANGING_TOTAL_EVENTS_RTN = 0xC0,
RESULT_CORE_AMBIENT_WINDOW_EVENTS_REF = 0xD0,
RESULT_CORE_RANGING_TOTAL_EVENTS_REF = 0xD4,
RESULT_PEAK_SIGNAL_RATE_REF = 0xB6,
ALGO_PART_TO_PART_RANGE_OFFSET_MM = 0x28,
I2C_SLAVE_DEVICE_ADDRESS = 0x8A,
MSRC_CONFIG_CONTROL = 0x60,
PRE_RANGE_CONFIG_MIN_SNR = 0x27,
PRE_RANGE_CONFIG_VALID_PHASE_LOW = 0x56,
PRE_RANGE_CONFIG_VALID_PHASE_HIGH = 0x57,
PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT = 0x64,
FINAL_RANGE_CONFIG_MIN_SNR = 0x67,
FINAL_RANGE_CONFIG_VALID_PHASE_LOW = 0x47,
FINAL_RANGE_CONFIG_VALID_PHASE_HIGH = 0x48,
FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT = 0x44,
PRE_RANGE_CONFIG_SIGMA_THRESH_HI = 0x61,
PRE_RANGE_CONFIG_SIGMA_THRESH_LO = 0x62,
PRE_RANGE_CONFIG_VCSEL_PERIOD = 0x50,
PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x51,
PRE_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x52,
SYSTEM_HISTOGRAM_BIN = 0x81,
HISTOGRAM_CONFIG_INITIAL_PHASE_SELECT = 0x33,
HISTOGRAM_CONFIG_READOUT_CTRL = 0x55,
FINAL_RANGE_CONFIG_VCSEL_PERIOD = 0x70,
FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x71,
FINAL_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x72,
CROSSTALK_COMPENSATION_PEAK_RATE_MCPS = 0x20,
MSRC_CONFIG_TIMEOUT_MACROP = 0x46,
SOFT_RESET_GO2_SOFT_RESET_N = 0xBF,
IDENTIFICATION_MODEL_ID = 0xC0,
IDENTIFICATION_REVISION_ID = 0xC2,
OSC_CALIBRATE_VAL = 0xF8,
GLOBAL_CONFIG_VCSEL_WIDTH = 0x32,
GLOBAL_CONFIG_SPAD_ENABLES_REF_0 = 0xB0,
GLOBAL_CONFIG_SPAD_ENABLES_REF_1 = 0xB1,
GLOBAL_CONFIG_SPAD_ENABLES_REF_2 = 0xB2,
GLOBAL_CONFIG_SPAD_ENABLES_REF_3 = 0xB3,
GLOBAL_CONFIG_SPAD_ENABLES_REF_4 = 0xB4,
GLOBAL_CONFIG_SPAD_ENABLES_REF_5 = 0xB5,
GLOBAL_CONFIG_REF_EN_START_SELECT = 0xB6,
DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD = 0x4E,
DYNAMIC_SPAD_REF_EN_START_OFFSET = 0x4F,
POWER_MANAGEMENT_GO1_POWER_FORCE = 0x80,
VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV = 0x89,
ALGO_PHASECAL_LIM = 0x30,
ALGO_PHASECAL_CONFIG_TIMEOUT = 0x30,
};
typedef enum { VcselPeriodPreRange, VcselPeriodFinalRange }vcselPeriodType;
// Additional info for one measurement
typedef struct{
uint16_t rawDistance; //uncorrected distance [mm], uint16_t
uint16_t signalCnt; //Signal Counting Rate [mcps], uint16_t, fixpoint9.7
uint16_t ambientCnt; //Ambient Counting Rate [mcps], uint16_t, fixpoint9.7
uint16_t spadCnt; //Effective SPAD return count, uint16_t, fixpoint8.8
uint8_t rangeStatus; //Ranging status (0-15)
} statInfo_t;
//------------------------------------------------------------
// API Functions
//------------------------------------------------------------
// configures chip i2c and lib for `new_addr` (8 bit, LSB=0)
void setAddress(uint8_t new_addr);
// Returns the current I²C address.
uint8_t getAddress(void);
// Iniitializes and configures the sensor.
// If the optional argument io_2v8 is 1, the sensor is configured for 2V8 mode (2.8 V I/O);
// if 0, the sensor is left in 1V8 mode. Returns 1 if the initialization completed successfully.
uint8_t initVL53L0X(uint8_t io_2v8);
// Sets the return signal rate limit to the given value in units of MCPS (mega counts per second).
// This is the minimum amplitude of the signal reflected from the target and received by the sensor
// necessary for it to report a valid reading. Setting a lower limit increases the potential range
// of the sensor but also increases the likelihood of getting an inaccurate reading because of
// reflections from objects other than the intended target. This limit is initialized to 0.25 MCPS
// by default. The return value is a boolean indicating whether the requested limit was valid.
uint8_t setSignalRateLimit(float limit_Mcps);
// Returns the current return signal rate limit in MCPS.
float getSignalRateLimit(void);
// Set the measurement timing budget in microseconds, which is the time allowed
// for one measurement; the ST API and this library take care of splitting the
// timing budget among the sub-steps in the ranging sequence. A longer timing
// budget allows for more accurate measurements. Increasing the budget by a
// factor of N decreases the range measurement standard deviation by a factor of
// sqrt(N). Defaults to about 33 milliseconds; the minimum is 20 ms.
// based on VL53L0X_set_measurement_timing_budget_micro_seconds()
uint8_t setMeasurementTimingBudget(uint32_t budget_us);
// Returns the current measurement timing budget in microseconds.
uint32_t getMeasurementTimingBudget(void);
// Sets the VCSEL (vertical cavity surface emitting laser) pulse period for the given period type
// (VcselPeriodPreRange or VcselPeriodFinalRange) to the given value (in PCLKs).
// Longer periods increase the potential range of the sensor. Valid values are (even numbers only):
// Pre: 12 to 18 (initialized to 14 by default)
// Final: 8 to 14 (initialized to 10 by default)
// The return value is a boolean indicating whether the requested period was valid.
uint8_t setVcselPulsePeriod(vcselPeriodType type, uint8_t period_pclks);
// Returns the current VCSEL pulse period for the given period type.
uint8_t getVcselPulsePeriod(vcselPeriodType type);
// Starts continuous ranging measurements. If the argument period_ms is 0,
// continuous back-to-back mode is used (the sensor takes measurements as often as possible);
// if it is nonzero, continuous timed mode is used, with the specified inter-measurement period
// in milliseconds determining how often the sensor takes a measurement.
void startContinuous(uint32_t period_ms);
// Stops continuous mode.
void stopContinuous(void);
// Returns a range reading in millimeters when continuous mode is active.
// Additional measurement data will be copied into `extraStats` if it is non-zero.
uint16_t readRangeContinuousMillimeters( statInfo_t *extraStats );
// Performs a single-shot ranging measurement and returns the reading in millimeters.
// Additional measurement data will be copied into `extraStats` if it is non-zero.
uint16_t readRangeSingleMillimeters( statInfo_t *extraStats );
// Sets a timeout period in milliseconds after which read operations will abort
// if the sensor is not ready. A value of 0 disables the timeout.
void setTimeout(uint16_t timeout);
// Returns the current timeout period setting.
uint16_t getTimeout(void);
// Indicates whether a read timeout has occurred since the last call to timeoutOccurred().
bool timeoutOccurred(void);
//---------------------------------------------------------
// I2C communication Functions
//---------------------------------------------------------
void writeReg(uint8_t reg, uint8_t value); // Write an 8-bit register
void writeReg16Bit(uint8_t reg, uint16_t value); // Write a 16-bit register
void writeReg32Bit(uint8_t reg, uint32_t value); // Write a 32-bit register
uint8_t readReg(uint8_t reg); // Read an 8-bit register
uint16_t readReg16Bit(uint8_t reg); // Read a 16-bit register
uint32_t readReg32Bit(uint8_t reg); // Read a 32-bit register
// Write `count` number of bytes from `src` to the sensor, starting at `reg`
void writeMulti(uint8_t reg, uint8_t *src, uint8_t count);
// Read `count` number of bytes from the sensor, starting at `reg`, to `dst`
void readMulti(uint8_t reg, uint8_t *dst, uint8_t count);
// TCC: Target CentreCheck
// MSRC: Minimum Signal Rate Check
// DSS: Dynamic Spad Selection
typedef struct {
uint8_t tcc, msrc, dss, pre_range, final_range;
}SequenceStepEnables;
typedef struct {
uint16_t pre_range_vcsel_period_pclks, final_range_vcsel_period_pclks;
uint16_t msrc_dss_tcc_mclks, pre_range_mclks, final_range_mclks;
uint32_t msrc_dss_tcc_us, pre_range_us, final_range_us;
}SequenceStepTimeouts;
#endif