#ifndef VL53L0X_h #define VL53L0X_h #include "stm32g0xx_hal.h" //------------------------------------------------------------ // For quick and dirty C++ compatibility //------------------------------------------------------------ #define bool uint8_t #define true 1 #define false 0 //------------------------------------------------------------ // Defines //------------------------------------------------------------ // I²C port handle #define TOF_I2C hi2c1 extern I2C_HandleTypeDef TOF_I2C; // Pins #define TOF_XSHUT_PORT Sens_SHUT_GPIO_Port #define TOF_XSHUT_PIN Sens_SHUT_Pin #define TOF_INT_PORT Sens_INT_GPIO_Port #define TOF_INT_PIN Sens_INT_Pin // I use a 8-bit number for the address, LSB must be 0 so that I can // OR over the last bit correctly based on reads and writes #define ADDRESS_DEFAULT 0b01010010 // Record the current time to check an upcoming timeout against #define startTimeout() (g_timeoutStartMs = HAL_GetTick()) // Check if timeout is enabled (set to nonzero value) and has expired #define checkTimeoutExpired() (g_ioTimeout > 0 && ((uint16_t)HAL_GetTick() - g_timeoutStartMs) > g_ioTimeout) // Decode VCSEL (vertical cavity surface emitting laser) pulse period in PCLKs // from register value // based on VL53L0X_decode_vcsel_period() #define decodeVcselPeriod(reg_val) (((reg_val) + 1) << 1) // Encode VCSEL pulse period register value from period in PCLKs // based on VL53L0X_encode_vcsel_period() #define encodeVcselPeriod(period_pclks) (((period_pclks) >> 1) - 1) // Calculate macro period in *nanoseconds* from VCSEL period in PCLKs // based on VL53L0X_calc_macro_period_ps() // PLL_period_ps = 1655; macro_period_vclks = 2304 #define calcMacroPeriod(vcsel_period_pclks) ((((uint32_t)2304 * (vcsel_period_pclks) * 1655) + 500) / 1000) // register addresses from API vl53l0x_device.h (ordered as listed there) enum regAddr { SYSRANGE_START = 0x00, SYSTEM_THRESH_HIGH = 0x0C, SYSTEM_THRESH_LOW = 0x0E, SYSTEM_SEQUENCE_CONFIG = 0x01, SYSTEM_RANGE_CONFIG = 0x09, SYSTEM_INTERMEASUREMENT_PERIOD = 0x04, SYSTEM_INTERRUPT_CONFIG_GPIO = 0x0A, GPIO_HV_MUX_ACTIVE_HIGH = 0x84, SYSTEM_INTERRUPT_CLEAR = 0x0B, RESULT_INTERRUPT_STATUS = 0x13, RESULT_RANGE_STATUS = 0x14, RESULT_CORE_AMBIENT_WINDOW_EVENTS_RTN = 0xBC, RESULT_CORE_RANGING_TOTAL_EVENTS_RTN = 0xC0, RESULT_CORE_AMBIENT_WINDOW_EVENTS_REF = 0xD0, RESULT_CORE_RANGING_TOTAL_EVENTS_REF = 0xD4, RESULT_PEAK_SIGNAL_RATE_REF = 0xB6, ALGO_PART_TO_PART_RANGE_OFFSET_MM = 0x28, I2C_SLAVE_DEVICE_ADDRESS = 0x8A, MSRC_CONFIG_CONTROL = 0x60, PRE_RANGE_CONFIG_MIN_SNR = 0x27, PRE_RANGE_CONFIG_VALID_PHASE_LOW = 0x56, PRE_RANGE_CONFIG_VALID_PHASE_HIGH = 0x57, PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT = 0x64, FINAL_RANGE_CONFIG_MIN_SNR = 0x67, FINAL_RANGE_CONFIG_VALID_PHASE_LOW = 0x47, FINAL_RANGE_CONFIG_VALID_PHASE_HIGH = 0x48, FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT = 0x44, PRE_RANGE_CONFIG_SIGMA_THRESH_HI = 0x61, PRE_RANGE_CONFIG_SIGMA_THRESH_LO = 0x62, PRE_RANGE_CONFIG_VCSEL_PERIOD = 0x50, PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x51, PRE_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x52, SYSTEM_HISTOGRAM_BIN = 0x81, HISTOGRAM_CONFIG_INITIAL_PHASE_SELECT = 0x33, HISTOGRAM_CONFIG_READOUT_CTRL = 0x55, FINAL_RANGE_CONFIG_VCSEL_PERIOD = 0x70, FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x71, FINAL_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x72, CROSSTALK_COMPENSATION_PEAK_RATE_MCPS = 0x20, MSRC_CONFIG_TIMEOUT_MACROP = 0x46, SOFT_RESET_GO2_SOFT_RESET_N = 0xBF, IDENTIFICATION_MODEL_ID = 0xC0, IDENTIFICATION_REVISION_ID = 0xC2, OSC_CALIBRATE_VAL = 0xF8, GLOBAL_CONFIG_VCSEL_WIDTH = 0x32, GLOBAL_CONFIG_SPAD_ENABLES_REF_0 = 0xB0, GLOBAL_CONFIG_SPAD_ENABLES_REF_1 = 0xB1, GLOBAL_CONFIG_SPAD_ENABLES_REF_2 = 0xB2, GLOBAL_CONFIG_SPAD_ENABLES_REF_3 = 0xB3, GLOBAL_CONFIG_SPAD_ENABLES_REF_4 = 0xB4, GLOBAL_CONFIG_SPAD_ENABLES_REF_5 = 0xB5, GLOBAL_CONFIG_REF_EN_START_SELECT = 0xB6, DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD = 0x4E, DYNAMIC_SPAD_REF_EN_START_OFFSET = 0x4F, POWER_MANAGEMENT_GO1_POWER_FORCE = 0x80, VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV = 0x89, ALGO_PHASECAL_LIM = 0x30, ALGO_PHASECAL_CONFIG_TIMEOUT = 0x30, }; typedef enum { VcselPeriodPreRange, VcselPeriodFinalRange }vcselPeriodType; // Additional info for one measurement typedef struct{ uint16_t rawDistance; //uncorrected distance [mm], uint16_t uint16_t signalCnt; //Signal Counting Rate [mcps], uint16_t, fixpoint9.7 uint16_t ambientCnt; //Ambient Counting Rate [mcps], uint16_t, fixpoint9.7 uint16_t spadCnt; //Effective SPAD return count, uint16_t, fixpoint8.8 uint8_t rangeStatus; //Ranging status (0-15) } statInfo_t; //------------------------------------------------------------ // API Functions //------------------------------------------------------------ // configures chip i2c and lib for `new_addr` (8 bit, LSB=0) void setAddress(uint8_t new_addr); // Returns the current I²C address. uint8_t getAddress(void); // Iniitializes and configures the sensor. // If the optional argument io_2v8 is 1, the sensor is configured for 2V8 mode (2.8 V I/O); // if 0, the sensor is left in 1V8 mode. Returns 1 if the initialization completed successfully. uint8_t initVL53L0X(uint8_t io_2v8); // Sets the return signal rate limit to the given value in units of MCPS (mega counts per second). // This is the minimum amplitude of the signal reflected from the target and received by the sensor // necessary for it to report a valid reading. Setting a lower limit increases the potential range // of the sensor but also increases the likelihood of getting an inaccurate reading because of // reflections from objects other than the intended target. This limit is initialized to 0.25 MCPS // by default. The return value is a boolean indicating whether the requested limit was valid. uint8_t setSignalRateLimit(float limit_Mcps); // Returns the current return signal rate limit in MCPS. float getSignalRateLimit(void); // Set the measurement timing budget in microseconds, which is the time allowed // for one measurement; the ST API and this library take care of splitting the // timing budget among the sub-steps in the ranging sequence. A longer timing // budget allows for more accurate measurements. Increasing the budget by a // factor of N decreases the range measurement standard deviation by a factor of // sqrt(N). Defaults to about 33 milliseconds; the minimum is 20 ms. // based on VL53L0X_set_measurement_timing_budget_micro_seconds() uint8_t setMeasurementTimingBudget(uint32_t budget_us); // Returns the current measurement timing budget in microseconds. uint32_t getMeasurementTimingBudget(void); // Sets the VCSEL (vertical cavity surface emitting laser) pulse period for the given period type // (VcselPeriodPreRange or VcselPeriodFinalRange) to the given value (in PCLKs). // Longer periods increase the potential range of the sensor. Valid values are (even numbers only): // Pre: 12 to 18 (initialized to 14 by default) // Final: 8 to 14 (initialized to 10 by default) // The return value is a boolean indicating whether the requested period was valid. uint8_t setVcselPulsePeriod(vcselPeriodType type, uint8_t period_pclks); // Returns the current VCSEL pulse period for the given period type. uint8_t getVcselPulsePeriod(vcselPeriodType type); // Starts continuous ranging measurements. If the argument period_ms is 0, // continuous back-to-back mode is used (the sensor takes measurements as often as possible); // if it is nonzero, continuous timed mode is used, with the specified inter-measurement period // in milliseconds determining how often the sensor takes a measurement. void startContinuous(uint32_t period_ms); // Stops continuous mode. void stopContinuous(void); // Returns a range reading in millimeters when continuous mode is active. // Additional measurement data will be copied into `extraStats` if it is non-zero. uint16_t readRangeContinuousMillimeters( statInfo_t *extraStats ); // Performs a single-shot ranging measurement and returns the reading in millimeters. // Additional measurement data will be copied into `extraStats` if it is non-zero. uint16_t readRangeSingleMillimeters( statInfo_t *extraStats ); // Sets a timeout period in milliseconds after which read operations will abort // if the sensor is not ready. A value of 0 disables the timeout. void setTimeout(uint16_t timeout); // Returns the current timeout period setting. uint16_t getTimeout(void); // Indicates whether a read timeout has occurred since the last call to timeoutOccurred(). bool timeoutOccurred(void); //--------------------------------------------------------- // I2C communication Functions //--------------------------------------------------------- void writeReg(uint8_t reg, uint8_t value); // Write an 8-bit register void writeReg16Bit(uint8_t reg, uint16_t value); // Write a 16-bit register void writeReg32Bit(uint8_t reg, uint32_t value); // Write a 32-bit register uint8_t readReg(uint8_t reg); // Read an 8-bit register uint16_t readReg16Bit(uint8_t reg); // Read a 16-bit register uint32_t readReg32Bit(uint8_t reg); // Read a 32-bit register // Write `count` number of bytes from `src` to the sensor, starting at `reg` void writeMulti(uint8_t reg, uint8_t *src, uint8_t count); // Read `count` number of bytes from the sensor, starting at `reg`, to `dst` void readMulti(uint8_t reg, uint8_t *dst, uint8_t count); // TCC: Target CentreCheck // MSRC: Minimum Signal Rate Check // DSS: Dynamic Spad Selection typedef struct { uint8_t tcc, msrc, dss, pre_range, final_range; }SequenceStepEnables; typedef struct { uint16_t pre_range_vcsel_period_pclks, final_range_vcsel_period_pclks; uint16_t msrc_dss_tcc_mclks, pre_range_mclks, final_range_mclks; uint32_t msrc_dss_tcc_us, pre_range_us, final_range_us; }SequenceStepTimeouts; #endif