First files added

This commit is contained in:
2023-01-24 20:41:43 +03:00
parent 1055809523
commit bc058cabc3
177 changed files with 394297 additions and 0 deletions

View File

@@ -0,0 +1,759 @@
/**
******************************************************************************
* @file stm32g0xx_hal.c
* @author MCD Application Team
* @brief HAL module driver.
* This is the common part of the HAL initialization
*
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The common HAL driver contains a set of generic and common APIs that can be
used by the PPP peripheral drivers and the user to start using the HAL.
[..]
The HAL contains two APIs categories:
(+) Common HAL APIs
(+) Services HAL APIs
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32g0xx_hal.h"
/** @addtogroup STM32G0xx_HAL_Driver
* @{
*/
/** @addtogroup HAL
* @brief HAL module driver
* @{
*/
#ifdef HAL_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup HAL_Private_Constants HAL Private Constants
* @{
*/
/**
* @brief STM32G0xx HAL Driver version number
*/
#define __STM32G0xx_HAL_VERSION_MAIN (0x01U) /*!< [31:24] main version */
#define __STM32G0xx_HAL_VERSION_SUB1 (0x04U) /*!< [23:16] sub1 version */
#define __STM32G0xx_HAL_VERSION_SUB2 (0x05U) /*!< [15:8] sub2 version */
#define __STM32G0xx_HAL_VERSION_RC (0x00U) /*!< [7:0] release candidate */
#define __STM32G0xx_HAL_VERSION ((__STM32G0xx_HAL_VERSION_MAIN << 24U)\
|(__STM32G0xx_HAL_VERSION_SUB1 << 16U)\
|(__STM32G0xx_HAL_VERSION_SUB2 << 8U )\
|(__STM32G0xx_HAL_VERSION_RC))
#if defined(VREFBUF)
#define VREFBUF_TIMEOUT_VALUE 10U /*!< 10 ms */
#endif /* VREFBUF */
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Exported variables ---------------------------------------------------------*/
/** @defgroup HAL_Exported_Variables HAL Exported Variables
* @{
*/
__IO uint32_t uwTick;
uint32_t uwTickPrio = (1UL << __NVIC_PRIO_BITS); /* Invalid PRIO */
HAL_TickFreqTypeDef uwTickFreq = HAL_TICK_FREQ_DEFAULT; /* 1KHz */
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup HAL_Exported_Functions
* @{
*/
/** @addtogroup HAL_Exported_Functions_Group1
* @brief HAL Initialization and Configuration functions
*
@verbatim
===============================================================================
##### HAL Initialization and Configuration functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Initialize the Flash interface the NVIC allocation and initial time base
clock configuration.
(+) De-initialize common part of the HAL.
(+) Configure the time base source to have 1ms time base with a dedicated
Tick interrupt priority.
(++) SysTick timer is used by default as source of time base, but user
can eventually implement his proper time base source (a general purpose
timer for example or other time source), keeping in mind that Time base
duration should be kept 1ms since PPP_TIMEOUT_VALUEs are defined and
handled in milliseconds basis.
(++) Time base configuration function (HAL_InitTick ()) is called automatically
at the beginning of the program after reset by HAL_Init() or at any time
when clock is configured, by HAL_RCC_ClockConfig().
(++) Source of time base is configured to generate interrupts at regular
time intervals. Care must be taken if HAL_Delay() is called from a
peripheral ISR process, the Tick interrupt line must have higher priority
(numerically lower) than the peripheral interrupt. Otherwise the caller
ISR process will be blocked.
(++) functions affecting time base configurations are declared as __weak
to make override possible in case of other implementations in user file.
@endverbatim
* @{
*/
/**
* @brief Configure the Flash prefetch and the Instruction cache,
* the time base source, NVIC and any required global low level hardware
* by calling the HAL_MspInit() callback function to be optionally defined in user file
* stm32g0xx_hal_msp.c.
*
* @note HAL_Init() function is called at the beginning of program after reset and before
* the clock configuration.
*
* @note In the default implementation the System Timer (Systick) is used as source of time base.
* The Systick configuration is based on HSI clock, as HSI is the clock
* used after a system Reset.
* Once done, time base tick starts incrementing: the tick variable counter is incremented
* each 1ms in the SysTick_Handler() interrupt handler.
*
* @retval HAL status
*/
HAL_StatusTypeDef HAL_Init(void)
{
HAL_StatusTypeDef status = HAL_OK;
/* Configure Flash prefetch, Instruction cache */
/* Default configuration at reset is: */
/* - Prefetch disabled */
/* - Instruction cache enabled */
#if (INSTRUCTION_CACHE_ENABLE == 0U)
__HAL_FLASH_INSTRUCTION_CACHE_DISABLE();
#endif /* INSTRUCTION_CACHE_ENABLE */
#if (PREFETCH_ENABLE != 0U)
__HAL_FLASH_PREFETCH_BUFFER_ENABLE();
#endif /* PREFETCH_ENABLE */
/* Use SysTick as time base source and configure 1ms tick (default clock after Reset is HSI) */
if (HAL_InitTick(TICK_INT_PRIORITY) != HAL_OK)
{
status = HAL_ERROR;
}
else
{
/* Init the low level hardware */
HAL_MspInit();
}
/* Return function status */
return status;
}
/**
* @brief This function de-Initializes common part of the HAL and stops the source of time base.
* @note This function is optional.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DeInit(void)
{
/* Reset of all peripherals */
__HAL_RCC_APB1_FORCE_RESET();
__HAL_RCC_APB1_RELEASE_RESET();
__HAL_RCC_APB2_FORCE_RESET();
__HAL_RCC_APB2_RELEASE_RESET();
__HAL_RCC_AHB_FORCE_RESET();
__HAL_RCC_AHB_RELEASE_RESET();
__HAL_RCC_IOP_FORCE_RESET();
__HAL_RCC_IOP_RELEASE_RESET();
/* De-Init the low level hardware */
HAL_MspDeInit();
/* Return function status */
return HAL_OK;
}
/**
* @brief Initialize the MSP.
* @retval None
*/
__weak void HAL_MspInit(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_MspInit could be implemented in the user file
*/
}
/**
* @brief DeInitializes the MSP.
* @retval None
*/
__weak void HAL_MspDeInit(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_MspDeInit could be implemented in the user file
*/
}
/**
* @brief This function configures the source of the time base:
* The time source is configured to have 1ms time base with a dedicated
* Tick interrupt priority.
* @note This function is called automatically at the beginning of program after
* reset by HAL_Init() or at any time when clock is reconfigured by HAL_RCC_ClockConfig().
* @note In the default implementation, SysTick timer is the source of time base.
* It is used to generate interrupts at regular time intervals.
* Care must be taken if HAL_Delay() is called from a peripheral ISR process,
* The SysTick interrupt must have higher priority (numerically lower)
* than the peripheral interrupt. Otherwise the caller ISR process will be blocked.
* The function is declared as __weak to be overwritten in case of other
* implementation in user file.
* @param TickPriority Tick interrupt priority.
* @retval HAL status
*/
__weak HAL_StatusTypeDef HAL_InitTick(uint32_t TickPriority)
{
HAL_StatusTypeDef status = HAL_OK;
/* Check uwTickFreq for MisraC 2012 (even if uwTickFreq is a enum type that doesn't take the value zero)*/
if ((uint32_t)uwTickFreq != 0U)
{
/*Configure the SysTick to have interrupt in 1ms time basis*/
if (HAL_SYSTICK_Config(SystemCoreClock / (1000U /(uint32_t)uwTickFreq)) == 0U)
{
/* Configure the SysTick IRQ priority */
if (TickPriority < (1UL << __NVIC_PRIO_BITS))
{
HAL_NVIC_SetPriority(SysTick_IRQn, TickPriority, 0U);
uwTickPrio = TickPriority;
}
else
{
status = HAL_ERROR;
}
}
else
{
status = HAL_ERROR;
}
}
else
{
status = HAL_ERROR;
}
/* Return function status */
return status;
}
/**
* @}
*/
/** @addtogroup HAL_Exported_Functions_Group2
* @brief HAL Control functions
*
@verbatim
===============================================================================
##### HAL Control functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Provide a tick value in millisecond
(+) Provide a blocking delay in millisecond
(+) Suspend the time base source interrupt
(+) Resume the time base source interrupt
(+) Get the HAL API driver version
(+) Get the device identifier
(+) Get the device revision identifier
@endverbatim
* @{
*/
/**
* @brief This function is called to increment a global variable "uwTick"
* used as application time base.
* @note In the default implementation, this variable is incremented each 1ms
* in SysTick ISR.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_IncTick(void)
{
uwTick += (uint32_t)uwTickFreq;
}
/**
* @brief Provides a tick value in millisecond.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval tick value
*/
__weak uint32_t HAL_GetTick(void)
{
return uwTick;
}
/**
* @brief This function returns a tick priority.
* @retval tick priority
*/
uint32_t HAL_GetTickPrio(void)
{
return uwTickPrio;
}
/**
* @brief Set new tick Freq.
* @retval status
*/
HAL_StatusTypeDef HAL_SetTickFreq(HAL_TickFreqTypeDef Freq)
{
HAL_StatusTypeDef status = HAL_OK;
HAL_TickFreqTypeDef prevTickFreq;
assert_param(IS_TICKFREQ(Freq));
if (uwTickFreq != Freq)
{
/* Back up uwTickFreq frequency */
prevTickFreq = uwTickFreq;
/* Update uwTickFreq global variable used by HAL_InitTick() */
uwTickFreq = Freq;
/* Apply the new tick Freq */
status = HAL_InitTick(uwTickPrio);
if (status != HAL_OK)
{
/* Restore previous tick frequency */
uwTickFreq = prevTickFreq;
}
}
return status;
}
/**
* @brief return tick frequency.
* @retval tick period in Hz
*/
HAL_TickFreqTypeDef HAL_GetTickFreq(void)
{
return uwTickFreq;
}
/**
* @brief This function provides minimum delay (in milliseconds) based
* on variable incremented.
* @note In the default implementation , SysTick timer is the source of time base.
* It is used to generate interrupts at regular time intervals where uwTick
* is incremented.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @param Delay specifies the delay time length, in milliseconds.
* @retval None
*/
__weak void HAL_Delay(uint32_t Delay)
{
uint32_t tickstart = HAL_GetTick();
uint32_t wait = Delay;
/* Add a freq to guarantee minimum wait */
if (wait < HAL_MAX_DELAY)
{
wait += (uint32_t)(uwTickFreq);
}
while ((HAL_GetTick() - tickstart) < wait)
{
}
}
/**
* @brief Suspend Tick increment.
* @note In the default implementation , SysTick timer is the source of time base. It is
* used to generate interrupts at regular time intervals. Once HAL_SuspendTick()
* is called, the SysTick interrupt will be disabled and so Tick increment
* is suspended.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_SuspendTick(void)
{
/* Disable SysTick Interrupt */
CLEAR_BIT(SysTick->CTRL,SysTick_CTRL_TICKINT_Msk);
}
/**
* @brief Resume Tick increment.
* @note In the default implementation , SysTick timer is the source of time base. It is
* used to generate interrupts at regular time intervals. Once HAL_ResumeTick()
* is called, the SysTick interrupt will be enabled and so Tick increment
* is resumed.
* @note This function is declared as __weak to be overwritten in case of other
* implementations in user file.
* @retval None
*/
__weak void HAL_ResumeTick(void)
{
/* Enable SysTick Interrupt */
SET_BIT(SysTick->CTRL, SysTick_CTRL_TICKINT_Msk);
}
/**
* @brief Returns the HAL revision
* @retval version : 0xXYZR (8bits for each decimal, R for RC)
*/
uint32_t HAL_GetHalVersion(void)
{
return __STM32G0xx_HAL_VERSION;
}
/**
* @brief Returns the device revision identifier.
* @retval Device revision identifier
*/
uint32_t HAL_GetREVID(void)
{
return ((DBG->IDCODE & DBG_IDCODE_REV_ID) >> 16U);
}
/**
* @brief Returns the device identifier.
* @retval Device identifier
*/
uint32_t HAL_GetDEVID(void)
{
return ((DBG->IDCODE) & DBG_IDCODE_DEV_ID);
}
/**
* @brief Returns first word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw0(void)
{
return (READ_REG(*((uint32_t *)UID_BASE)));
}
/**
* @brief Returns second word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw1(void)
{
return (READ_REG(*((uint32_t *)(UID_BASE + 4U))));
}
/**
* @brief Returns third word of the unique device identifier (UID based on 96 bits)
* @retval Device identifier
*/
uint32_t HAL_GetUIDw2(void)
{
return (READ_REG(*((uint32_t *)(UID_BASE + 8U))));
}
/**
* @}
*/
/** @addtogroup HAL_Exported_Functions_Group3
* @brief HAL Debug functions
*
@verbatim
===============================================================================
##### HAL Debug functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Enable/Disable Debug module during STOP mode
(+) Enable/Disable Debug module during STANDBY mode
@endverbatim
* @{
*/
/**
* @brief Enable the Debug Module during STOP mode
* @retval None
*/
void HAL_DBGMCU_EnableDBGStopMode(void)
{
SET_BIT(DBG->CR, DBG_CR_DBG_STOP);
}
/**
* @brief Disable the Debug Module during STOP mode
* @retval None
*/
void HAL_DBGMCU_DisableDBGStopMode(void)
{
CLEAR_BIT(DBG->CR, DBG_CR_DBG_STOP);
}
/**
* @brief Enable the Debug Module during STANDBY mode
* @retval None
*/
void HAL_DBGMCU_EnableDBGStandbyMode(void)
{
SET_BIT(DBG->CR, DBG_CR_DBG_STANDBY);
}
/**
* @brief Disable the Debug Module during STANDBY mode
* @retval None
*/
void HAL_DBGMCU_DisableDBGStandbyMode(void)
{
CLEAR_BIT(DBG->CR, DBG_CR_DBG_STANDBY);
}
/**
* @}
*/
/** @addtogroup HAL_Exported_Functions_Group4
* @brief SYSCFG configuration functions
*
@verbatim
===============================================================================
##### HAL SYSCFG configuration functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Enable/Disable Pin remap
(+) Configure the Voltage reference buffer
(+) Enable/Disable the Voltage reference buffer
(+) Enable/Disable the I/O analog switch voltage booster
(+) Enable/Disable dead battery behavior(*)
(+) Configure Clamping Diode on specific pins(*)
(*) Feature not available on all devices
@endverbatim
* @{
*/
#if defined(VREFBUF)
/**
* @brief Configure the internal voltage reference buffer voltage scale.
* @param VoltageScaling specifies the output voltage to achieve
* This parameter can be one of the following values:
* @arg @ref SYSCFG_VREFBUF_VoltageScale
* @retval None
*/
void HAL_SYSCFG_VREFBUF_VoltageScalingConfig(uint32_t VoltageScaling)
{
/* Check the parameters */
assert_param(IS_SYSCFG_VREFBUF_VOLTAGE_SCALE(VoltageScaling));
MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_VRS, VoltageScaling);
}
/**
* @brief Configure the internal voltage reference buffer high impedance mode.
* @param Mode specifies the high impedance mode
* This parameter can be one of the following values:
* @arg @ref SYSCFG_VREFBUF_HighImpedance
* @retval None
*/
void HAL_SYSCFG_VREFBUF_HighImpedanceConfig(uint32_t Mode)
{
/* Check the parameters */
assert_param(IS_SYSCFG_VREFBUF_HIGH_IMPEDANCE(Mode));
MODIFY_REG(VREFBUF->CSR, VREFBUF_CSR_HIZ, Mode);
}
/**
* @brief Tune the Internal Voltage Reference buffer (VREFBUF).
* @note VrefBuf voltage scale is calibrated in production for each device,
* using voltage scale 1. This calibration value is loaded
* as default trimming value at device power up.
* This trimming value can be fine tuned for voltage scales 0 and 1
* using this function.
* @retval None
*/
void HAL_SYSCFG_VREFBUF_TrimmingConfig(uint32_t TrimmingValue)
{
/* Check the parameters */
assert_param(IS_SYSCFG_VREFBUF_TRIMMING(TrimmingValue));
MODIFY_REG(VREFBUF->CCR, VREFBUF_CCR_TRIM, TrimmingValue);
}
/**
* @brief Enable the Internal Voltage Reference buffer (VREFBUF).
* @retval HAL_OK/HAL_TIMEOUT
*/
HAL_StatusTypeDef HAL_SYSCFG_EnableVREFBUF(void)
{
uint32_t tickstart;
SET_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR);
/* Get Start Tick*/
tickstart = HAL_GetTick();
/* Wait for VRR bit */
while (READ_BIT(VREFBUF->CSR, VREFBUF_CSR_VRR) == 0x00U)
{
if ((HAL_GetTick() - tickstart) > VREFBUF_TIMEOUT_VALUE)
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief Disable the Internal Voltage Reference buffer (VREFBUF).
*
* @retval None
*/
void HAL_SYSCFG_DisableVREFBUF(void)
{
CLEAR_BIT(VREFBUF->CSR, VREFBUF_CSR_ENVR);
}
#endif /* VREFBUF */
/**
* @brief Enable the I/O analog switch voltage booster
* @retval None
*/
void HAL_SYSCFG_EnableIOAnalogSwitchBooster(void)
{
SET_BIT(SYSCFG->CFGR1, SYSCFG_CFGR1_BOOSTEN);
}
/**
* @brief Disable the I/O analog switch voltage booster
* @retval None
*/
void HAL_SYSCFG_DisableIOAnalogSwitchBooster(void)
{
CLEAR_BIT(SYSCFG->CFGR1, SYSCFG_CFGR1_BOOSTEN);
}
/**
* @brief Enable the remap on PA11_PA12
* @param PinRemap specifies which pins have to be remapped
* This parameter can be any combination of the following values:
* @arg @ref SYSCFG_REMAP_PA11
* @arg @ref SYSCFG_REMAP_PA12
* @retval None
*/
void HAL_SYSCFG_EnableRemap(uint32_t PinRemap)
{
/* Check the parameter */
assert_param(IS_HAL_REMAP_PIN(PinRemap));
SET_BIT(SYSCFG->CFGR1, PinRemap);
}
/**
* @brief Disable the remap on PA11_PA12
* @param PinRemap specifies which pins will behave normally
* This parameter can be any combination of the following values:
* @arg @ref SYSCFG_REMAP_PA11
* @arg @ref SYSCFG_REMAP_PA12
* @retval None
*/
void HAL_SYSCFG_DisableRemap(uint32_t PinRemap)
{
/* Check the parameter */
assert_param(IS_HAL_REMAP_PIN(PinRemap));
CLEAR_BIT(SYSCFG->CFGR1, PinRemap);
}
#if defined(SYSCFG_CDEN_SUPPORT)
/**
* @brief Enable Clamping Diode on specified IO
* @param PinConfig specifies on which pins clamping Diode has to be enabled
* This parameter can be any combination of the following values:
* @arg @ref SYSCFG_ClampingDiode
* @retval None
*/
void HAL_SYSCFG_EnableClampingDiode(uint32_t PinConfig)
{
/* Check the parameter */
assert_param(IS_SYSCFG_CLAMPINGDIODE(PinConfig));
SET_BIT(SYSCFG->CFGR2, PinConfig);
}
/**
* @brief Disable Clamping Diode on specified IO
* @param PinConfig specifies on which pins clamping Diode has to be disabled
* This parameter can be any combination of the following values:
* @arg @ref SYSCFG_ClampingDiode
* @retval None
*/
void HAL_SYSCFG_DisableClampingDiode(uint32_t PinConfig)
{
/* Check the parameter */
assert_param(IS_SYSCFG_CLAMPINGDIODE(PinConfig));
CLEAR_BIT(SYSCFG->CFGR2, PinConfig);
}
#endif /* SYSCFG_CDEN_SUPPORT */
#if defined (SYSCFG_CFGR1_UCPD1_STROBE) || defined (SYSCFG_CFGR1_UCPD2_STROBE)
/**
* @brief Strobe configuration of GPIO depending on UCPDx dead battery settings
* @param ConfigDeadBattery specifies on which pins to make effective or not Dead Battery sw configuration
* This parameter can be any combination of the following values:
* @arg @ref SYSCFG_UCPD1_STROBE
* @arg @ref SYSCFG_UCPD2_STROBE
* @retval None
*/
void HAL_SYSCFG_StrobeDBattpinsConfig(uint32_t ConfigDeadBattery)
{
assert_param(IS_SYSCFG_DBATT_CONFIG(ConfigDeadBattery));
/* Change strobe configuration of GPIO depending on UCPDx dead battery settings */
MODIFY_REG(SYSCFG->CFGR1, (SYSCFG_CFGR1_UCPD1_STROBE | SYSCFG_CFGR1_UCPD2_STROBE), ConfigDeadBattery);
}
#endif /* SYSCFG_CFGR1_UCPD1_STROBE || SYSCFG_CFGR1_UCPD2_STROBE */
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

View File

@@ -0,0 +1,418 @@
/**
******************************************************************************
* @file stm32g0xx_hal_cortex.c
* @author MCD Application Team
* @brief CORTEX HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the CORTEX:
* + Initialization and Configuration functions
* + Peripheral Control functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
*** How to configure Interrupts using CORTEX HAL driver ***
===========================================================
[..]
This section provides functions allowing to configure the NVIC interrupts (IRQ).
The Cortex M0+ exceptions are managed by CMSIS functions.
(#) Enable and Configure the priority of the selected IRQ Channels.
The priority can be 0..3.
-@- Lower priority values gives higher priority.
-@- Priority Order:
(#@) Lowest priority.
(#@) Lowest hardware priority (IRQn position).
(#) Configure the priority of the selected IRQ Channels using HAL_NVIC_SetPriority()
(#) Enable the selected IRQ Channels using HAL_NVIC_EnableIRQ()
-@- Negative value of IRQn_Type are not allowed.
*** How to configure Systick using CORTEX HAL driver ***
========================================================
[..]
Setup SysTick Timer for time base.
(+) The HAL_SYSTICK_Config()function calls the SysTick_Config() function which
is a CMSIS function that:
(++) Configures the SysTick Reload register with value passed as function parameter.
(++) Configures the SysTick IRQ priority to the lowest value (0x03).
(++) Resets the SysTick Counter register.
(++) Configures the SysTick Counter clock source to be Core Clock Source (HCLK).
(++) Enables the SysTick Interrupt.
(++) Starts the SysTick Counter.
(+) You can change the SysTick Clock source to be HCLK_Div8 by calling the macro
__HAL_CORTEX_SYSTICKCLK_CONFIG(SYSTICK_CLKSOURCE_HCLK_DIV8) just after the
HAL_SYSTICK_Config() function call. The __HAL_CORTEX_SYSTICKCLK_CONFIG() macro is defined
inside the stm32g0xx_hal_cortex.h file.
(+) You can change the SysTick IRQ priority by calling the
HAL_NVIC_SetPriority(SysTick_IRQn,...) function just after the HAL_SYSTICK_Config() function
call. The HAL_NVIC_SetPriority() call the NVIC_SetPriority() function which is a CMSIS function.
(+) To adjust the SysTick time base, use the following formula:
Reload Value = SysTick Counter Clock (Hz) x Desired Time base (s)
(++) Reload Value is the parameter to be passed for HAL_SYSTICK_Config() function
(++) Reload Value should not exceed 0xFFFFFF
@endverbatim
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32g0xx_hal.h"
/** @addtogroup STM32G0xx_HAL_Driver
* @{
*/
/** @addtogroup CORTEX
* @{
*/
#ifdef HAL_CORTEX_MODULE_ENABLED
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup CORTEX_Exported_Functions
* @{
*/
/** @addtogroup CORTEX_Exported_Functions_Group1
* @brief Initialization and Configuration functions
*
@verbatim
==============================================================================
##### Initialization and Configuration functions #####
==============================================================================
[..]
This section provides the CORTEX HAL driver functions allowing to configure Interrupts
Systick functionalities
@endverbatim
* @{
*/
/**
* @brief Sets the priority of an interrupt.
* @param IRQn External interrupt number .
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to stm32g0xx.h file)
* @param PreemptPriority The preemption priority for the IRQn channel.
* This parameter can be a value between 0 and 3.
* A lower priority value indicates a higher priority
* @param SubPriority the subpriority level for the IRQ channel.
* with stm32g0xx devices, this parameter is a dummy value and it is ignored, because
* no subpriority supported in Cortex M0+ based products.
* @retval None
*/
void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(SubPriority);
/* Check the parameters */
assert_param(IS_NVIC_PREEMPTION_PRIORITY(PreemptPriority));
NVIC_SetPriority(IRQn, PreemptPriority);
}
/**
* @brief Enable a device specific interrupt in the NVIC interrupt controller.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32g0xxxx.h))
* @retval None
*/
void HAL_NVIC_EnableIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Enable interrupt */
NVIC_EnableIRQ(IRQn);
}
/**
* @brief Disable a device specific interrupt in the NVIC interrupt controller.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32g0xxxx.h))
* @retval None
*/
void HAL_NVIC_DisableIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Disable interrupt */
NVIC_DisableIRQ(IRQn);
}
/**
* @brief Initiate a system reset request to reset the MCU.
* @retval None
*/
void HAL_NVIC_SystemReset(void)
{
/* System Reset */
NVIC_SystemReset();
}
/**
* @brief Initialize the System Timer with interrupt enabled and start the System Tick Timer (SysTick):
* Counter is in free running mode to generate periodic interrupts.
* @param TicksNumb Specifies the ticks Number of ticks between two interrupts.
* @retval status: - 0 Function succeeded.
* - 1 Function failed.
*/
uint32_t HAL_SYSTICK_Config(uint32_t TicksNumb)
{
return SysTick_Config(TicksNumb);
}
/**
* @}
*/
/** @addtogroup CORTEX_Exported_Functions_Group2
* @brief Cortex control functions
*
@verbatim
==============================================================================
##### Peripheral Control functions #####
==============================================================================
[..]
This subsection provides a set of functions allowing to control the CORTEX
(NVIC, SYSTICK, MPU) functionalities.
@endverbatim
* @{
*/
/**
* @brief Get the priority of an interrupt.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32g0xxxx.h))
* @retval None
*/
uint32_t HAL_NVIC_GetPriority(IRQn_Type IRQn)
{
/* Get priority for Cortex-M system or device specific interrupts */
return NVIC_GetPriority(IRQn);
}
/**
* @brief Set Pending bit of an external interrupt.
* @param IRQn External interrupt number
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32g0xxxx.h))
* @retval None
*/
void HAL_NVIC_SetPendingIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Set interrupt pending */
NVIC_SetPendingIRQ(IRQn);
}
/**
* @brief Get Pending Interrupt (read the pending register in the NVIC
* and return the pending bit for the specified interrupt).
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32g0xxxx.h))
* @retval status: - 0 Interrupt status is not pending.
* - 1 Interrupt status is pending.
*/
uint32_t HAL_NVIC_GetPendingIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Return 1 if pending else 0 */
return NVIC_GetPendingIRQ(IRQn);
}
/**
* @brief Clear the pending bit of an external interrupt.
* @param IRQn External interrupt number.
* This parameter can be an enumerator of IRQn_Type enumeration
* (For the complete STM32 Devices IRQ Channels list, please refer to the appropriate CMSIS device file (stm32g0xxxx.h))
* @retval None
*/
void HAL_NVIC_ClearPendingIRQ(IRQn_Type IRQn)
{
/* Check the parameters */
assert_param(IS_NVIC_DEVICE_IRQ(IRQn));
/* Clear pending interrupt */
NVIC_ClearPendingIRQ(IRQn);
}
/**
* @brief Configure the SysTick clock source.
* @param CLKSource specifies the SysTick clock source.
* This parameter can be one of the following values:
* @arg SYSTICK_CLKSOURCE_HCLK_DIV8: AHB clock divided by 8 selected as SysTick clock source.
* @arg SYSTICK_CLKSOURCE_HCLK: AHB clock selected as SysTick clock source.
* @retval None
*/
void HAL_SYSTICK_CLKSourceConfig(uint32_t CLKSource)
{
/* Check the parameters */
assert_param(IS_SYSTICK_CLK_SOURCE(CLKSource));
if (CLKSource == SYSTICK_CLKSOURCE_HCLK)
{
SysTick->CTRL |= SYSTICK_CLKSOURCE_HCLK;
}
else
{
SysTick->CTRL &= ~SYSTICK_CLKSOURCE_HCLK;
}
}
/**
* @brief Handle SYSTICK interrupt request.
* @retval None
*/
void HAL_SYSTICK_IRQHandler(void)
{
HAL_SYSTICK_Callback();
}
/**
* @brief SYSTICK callback.
* @retval None
*/
__weak void HAL_SYSTICK_Callback(void)
{
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_SYSTICK_Callback could be implemented in the user file
*/
}
#if (__MPU_PRESENT == 1U)
/**
* @brief Enable the MPU.
* @param MPU_Control Specifies the control mode of the MPU during hard fault,
* NMI, FAULTMASK and privileged access to the default memory
* This parameter can be one of the following values:
* @arg MPU_HFNMI_PRIVDEF_NONE
* @arg MPU_HARDFAULT_NMI
* @arg MPU_PRIVILEGED_DEFAULT
* @arg MPU_HFNMI_PRIVDEF
* @retval None
*/
void HAL_MPU_Enable(uint32_t MPU_Control)
{
/* Enable the MPU */
MPU->CTRL = (MPU_Control | MPU_CTRL_ENABLE_Msk);
/* Ensure MPU setting take effects */
__DSB();
__ISB();
}
/**
* @brief Disable the MPU.
* @retval None
*/
void HAL_MPU_Disable(void)
{
/* Make sure outstanding transfers are done */
__DMB();
/* Disable the MPU and clear the control register*/
MPU->CTRL = 0;
}
/**
* @brief Initialize and configure the Region and the memory to be protected.
* @param MPU_Init Pointer to a MPU_Region_InitTypeDef structure that contains
* the initialization and configuration information.
* @retval None
*/
void HAL_MPU_ConfigRegion(MPU_Region_InitTypeDef *MPU_Init)
{
/* Check the parameters */
assert_param(IS_MPU_REGION_NUMBER(MPU_Init->Number));
assert_param(IS_MPU_REGION_ENABLE(MPU_Init->Enable));
/* Set the Region number */
MPU->RNR = MPU_Init->Number;
if ((MPU_Init->Enable) != 0U)
{
/* Check the parameters */
assert_param(IS_MPU_INSTRUCTION_ACCESS(MPU_Init->DisableExec));
assert_param(IS_MPU_REGION_PERMISSION_ATTRIBUTE(MPU_Init->AccessPermission));
assert_param(IS_MPU_TEX_LEVEL(MPU_Init->TypeExtField));
assert_param(IS_MPU_ACCESS_SHAREABLE(MPU_Init->IsShareable));
assert_param(IS_MPU_ACCESS_CACHEABLE(MPU_Init->IsCacheable));
assert_param(IS_MPU_ACCESS_BUFFERABLE(MPU_Init->IsBufferable));
assert_param(IS_MPU_SUB_REGION_DISABLE(MPU_Init->SubRegionDisable));
assert_param(IS_MPU_REGION_SIZE(MPU_Init->Size));
MPU->RBAR = MPU_Init->BaseAddress;
MPU->RASR = ((uint32_t)MPU_Init->DisableExec << MPU_RASR_XN_Pos) |
((uint32_t)MPU_Init->AccessPermission << MPU_RASR_AP_Pos) |
((uint32_t)MPU_Init->TypeExtField << MPU_RASR_TEX_Pos) |
((uint32_t)MPU_Init->IsShareable << MPU_RASR_S_Pos) |
((uint32_t)MPU_Init->IsCacheable << MPU_RASR_C_Pos) |
((uint32_t)MPU_Init->IsBufferable << MPU_RASR_B_Pos) |
((uint32_t)MPU_Init->SubRegionDisable << MPU_RASR_SRD_Pos) |
((uint32_t)MPU_Init->Size << MPU_RASR_SIZE_Pos) |
((uint32_t)MPU_Init->Enable << MPU_RASR_ENABLE_Pos);
}
else
{
MPU->RBAR = 0x00U;
MPU->RASR = 0x00U;
}
}
#endif /* __MPU_PRESENT */
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_CORTEX_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,320 @@
/**
******************************************************************************
* @file stm32g0xx_hal_dma_ex.c
* @author MCD Application Team
* @brief DMA Extension HAL module driver
* This file provides firmware functions to manage the following
* functionalities of the DMA Extension peripheral:
* + Extended features functions
*
@verbatim
==============================================================================
##### How to use this driver #####
==============================================================================
[..]
The DMA Extension HAL driver can be used as follows:
(+) Configure the DMAMUX Synchronization Block using HAL_DMAEx_ConfigMuxSync function.
(+) Configure the DMAMUX Request Generator Block using HAL_DMAEx_ConfigMuxRequestGenerator function.
Functions HAL_DMAEx_EnableMuxRequestGenerator and HAL_DMAEx_DisableMuxRequestGenerator can then be used
to respectively enable/disable the request generator.
(+) To handle the DMAMUX Interrupts, the function HAL_DMAEx_MUX_IRQHandler should be called from
the DMAMUX IRQ handler i.e DMAMUX1_OVR_IRQHandler.
As only one interrupt line is available for all DMAMUX channels and request generators , HAL_DMAEx_MUX_IRQHandler should be
called with, as parameter, the appropriate DMA handle as many as used DMAs in the user project
(exception done if a given DMA is not using the DMAMUX SYNC block neither a request generator)
@endverbatim
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32g0xx_hal.h"
/** @addtogroup STM32G0xx_HAL_Driver
* @{
*/
/** @defgroup DMAEx DMAEx
* @brief DMA Extended HAL module driver
* @{
*/
#ifdef HAL_DMA_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private Constants ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup DMAEx_Exported_Functions DMAEx Exported Functions
* @{
*/
/** @defgroup DMAEx_Exported_Functions_Group1 DMAEx Extended features functions
* @brief Extended features functions
*
@verbatim
===============================================================================
##### Extended features functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure the DMAMUX Synchronization Block using HAL_DMAEx_ConfigMuxSync function.
(+) Configure the DMAMUX Request Generator Block using HAL_DMAEx_ConfigMuxRequestGenerator function.
Functions HAL_DMAEx_EnableMuxRequestGenerator and HAL_DMAEx_DisableMuxRequestGenerator can then be used
to respectively enable/disable the request generator.
(+) Handle DMAMUX interrupts using HAL_DMAEx_MUX_IRQHandler : should be called from
the DMAMUX IRQ handler
@endverbatim
* @{
*/
/**
* @brief Configure the DMAMUX synchronization parameters for a given DMA channel (instance).
* @param hdma Pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA channel.
* @param pSyncConfig Pointer to HAL_DMA_MuxSyncConfigTypeDef contains the DMAMUX synchronization parameters
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMAEx_ConfigMuxSync(DMA_HandleTypeDef *hdma, HAL_DMA_MuxSyncConfigTypeDef *pSyncConfig)
{
/* Check the parameters */
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
assert_param(IS_DMAMUX_SYNC_SIGNAL_ID(pSyncConfig->SyncSignalID));
assert_param(IS_DMAMUX_SYNC_POLARITY(pSyncConfig-> SyncPolarity));
assert_param(IS_DMAMUX_SYNC_STATE(pSyncConfig->SyncEnable));
assert_param(IS_DMAMUX_SYNC_EVENT(pSyncConfig->EventEnable));
assert_param(IS_DMAMUX_SYNC_REQUEST_NUMBER(pSyncConfig->RequestNumber));
/*Check if the DMA state is ready */
if (hdma->State == HAL_DMA_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hdma);
/* Set the new synchronization parameters (and keep the request ID filled during the Init)*/
MODIFY_REG(hdma->DMAmuxChannel->CCR, \
(~DMAMUX_CxCR_DMAREQ_ID), \
(pSyncConfig->SyncSignalID | ((pSyncConfig->RequestNumber - 1U) << DMAMUX_CxCR_NBREQ_Pos) | \
pSyncConfig->SyncPolarity | ((uint32_t)pSyncConfig->SyncEnable << DMAMUX_CxCR_SE_Pos) | \
((uint32_t)pSyncConfig->EventEnable << DMAMUX_CxCR_EGE_Pos)));
/* Process UnLocked */
__HAL_UNLOCK(hdma);
return HAL_OK;
}
else
{
/* Set the error code to busy */
hdma->ErrorCode = HAL_DMA_ERROR_BUSY;
/* Return error status */
return HAL_ERROR;
}
}
/**
* @brief Configure the DMAMUX request generator block used by the given DMA channel (instance).
* @param hdma Pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA channel.
* @param pRequestGeneratorConfig Pointer to HAL_DMA_MuxRequestGeneratorConfigTypeDef
* contains the request generator parameters.
*
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMAEx_ConfigMuxRequestGenerator(DMA_HandleTypeDef *hdma,
HAL_DMA_MuxRequestGeneratorConfigTypeDef *pRequestGeneratorConfig)
{
HAL_StatusTypeDef status;
HAL_DMA_StateTypeDef temp_state = hdma->State;
/* Check the parameters */
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
assert_param(IS_DMAMUX_REQUEST_GEN_SIGNAL_ID(pRequestGeneratorConfig->SignalID));
assert_param(IS_DMAMUX_REQUEST_GEN_POLARITY(pRequestGeneratorConfig->Polarity));
assert_param(IS_DMAMUX_REQUEST_GEN_REQUEST_NUMBER(pRequestGeneratorConfig->RequestNumber));
/* check if the DMA state is ready
and DMA is using a DMAMUX request generator block
*/
if (hdma->DMAmuxRequestGen == 0U)
{
/* Set the error code to busy */
hdma->ErrorCode = HAL_DMA_ERROR_PARAM;
/* error status */
status = HAL_ERROR;
}
else if (((hdma->DMAmuxRequestGen->RGCR & DMAMUX_RGxCR_GE) == 0U) && (temp_state == HAL_DMA_STATE_READY))
{
/* RequestGenerator must be disable prior to the configuration i.e GE bit is 0 */
/* Process Locked */
__HAL_LOCK(hdma);
/* Set the request generator new parameters*/
hdma->DMAmuxRequestGen->RGCR = pRequestGeneratorConfig->SignalID | \
((pRequestGeneratorConfig->RequestNumber - 1U) << DMAMUX_RGxCR_GNBREQ_Pos) | \
pRequestGeneratorConfig->Polarity;
/* Process UnLocked */
__HAL_UNLOCK(hdma);
return HAL_OK;
}
else
{
/* Set the error code to busy */
hdma->ErrorCode = HAL_DMA_ERROR_BUSY;
/* error status */
status = HAL_ERROR;
}
return status;
}
/**
* @brief Enable the DMAMUX request generator block used by the given DMA channel (instance).
* @param hdma Pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA channel.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMAEx_EnableMuxRequestGenerator(DMA_HandleTypeDef *hdma)
{
/* Check the parameters */
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
/* check if the DMA state is ready
and DMA is using a DMAMUX request generator block
*/
if ((hdma->State != HAL_DMA_STATE_RESET) && (hdma->DMAmuxRequestGen != 0))
{
/* Enable the request generator*/
hdma->DMAmuxRequestGen->RGCR |= DMAMUX_RGxCR_GE;
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Disable the DMAMUX request generator block used by the given DMA channel (instance).
* @param hdma Pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA channel.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_DMAEx_DisableMuxRequestGenerator(DMA_HandleTypeDef *hdma)
{
/* Check the parameters */
assert_param(IS_DMA_ALL_INSTANCE(hdma->Instance));
/* check if the DMA state is ready
and DMA is using a DMAMUX request generator block
*/
if ((hdma->State != HAL_DMA_STATE_RESET) && (hdma->DMAmuxRequestGen != 0))
{
/* Disable the request generator*/
hdma->DMAmuxRequestGen->RGCR &= ~DMAMUX_RGxCR_GE;
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Handles DMAMUX interrupt request.
* @param hdma Pointer to a DMA_HandleTypeDef structure that contains
* the configuration information for the specified DMA channel.
* @retval None
*/
void HAL_DMAEx_MUX_IRQHandler(DMA_HandleTypeDef *hdma)
{
/* Check for DMAMUX Synchronization overrun */
if ((hdma->DMAmuxChannelStatus->CSR & hdma->DMAmuxChannelStatusMask) != 0U)
{
/* Disable the synchro overrun interrupt */
hdma->DMAmuxChannel->CCR &= ~DMAMUX_CxCR_SOIE;
/* Clear the DMAMUX synchro overrun flag */
hdma->DMAmuxChannelStatus->CFR = hdma->DMAmuxChannelStatusMask;
/* Update error code */
hdma->ErrorCode |= HAL_DMA_ERROR_SYNC;
if (hdma->XferErrorCallback != NULL)
{
/* Transfer error callback */
hdma->XferErrorCallback(hdma);
}
}
if (hdma->DMAmuxRequestGen != 0)
{
/* if using a DMAMUX request generator block Check for DMAMUX request generator overrun */
if ((hdma->DMAmuxRequestGenStatus->RGSR & hdma->DMAmuxRequestGenStatusMask) != 0U)
{
/* Disable the request gen overrun interrupt */
hdma->DMAmuxRequestGen->RGCR &= ~DMAMUX_RGxCR_OIE;
/* Clear the DMAMUX request generator overrun flag */
hdma->DMAmuxRequestGenStatus->RGCFR = hdma->DMAmuxRequestGenStatusMask;
/* Update error code */
hdma->ErrorCode |= HAL_DMA_ERROR_REQGEN;
if (hdma->XferErrorCallback != NULL)
{
/* Transfer error callback */
hdma->XferErrorCallback(hdma);
}
}
}
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_DMA_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

View File

@@ -0,0 +1,670 @@
/**
******************************************************************************
* @file stm32g0xx_hal_exti.c
* @author MCD Application Team
* @brief EXTI HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the General Purpose Input/Output (EXTI) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### EXTI Peripheral features #####
==============================================================================
[..]
(+) Each Exti line can be configured within this driver.
(+) Exti line can be configured in 3 different modes
(++) Interrupt
(++) Event
(++) Both of them
(+) Configurable Exti lines can be configured with 3 different triggers
(++) Rising
(++) Falling
(++) Both of them
(+) When set in interrupt mode, configurable Exti lines have two diffenrents
interrupt pending registers which allow to distinguish which transition
occurs:
(++) Rising edge pending interrupt
(++) Falling
(+) Exti lines 0 to 15 are linked to gpio pin number 0 to 15. Gpio port can
be selected through multiplexer.
##### How to use this driver #####
==============================================================================
[..]
(#) Configure the EXTI line using HAL_EXTI_SetConfigLine().
(++) Choose the interrupt line number by setting "Line" member from
EXTI_ConfigTypeDef structure.
(++) Configure the interrupt and/or event mode using "Mode" member from
EXTI_ConfigTypeDef structure.
(++) For configurable lines, configure rising and/or falling trigger
"Trigger" member from EXTI_ConfigTypeDef structure.
(++) For Exti lines linked to gpio, choose gpio port using "GPIOSel"
member from GPIO_InitTypeDef structure.
(#) Get current Exti configuration of a dedicated line using
HAL_EXTI_GetConfigLine().
(++) Provide exiting handle as parameter.
(++) Provide pointer on EXTI_ConfigTypeDef structure as second parameter.
(#) Clear Exti configuration of a dedicated line using HAL_EXTI_GetConfigLine().
(++) Provide exiting handle as parameter.
(#) Register callback to treat Exti interrupts using HAL_EXTI_RegisterCallback().
(++) Provide exiting handle as first parameter.
(++) Provide which callback will be registered using one value from
EXTI_CallbackIDTypeDef.
(++) Provide callback function pointer.
(#) Get interrupt pending bit using HAL_EXTI_GetPending().
(#) Clear interrupt pending bit using HAL_EXTI_GetPending().
(#) Generate software interrupt using HAL_EXTI_GenerateSWI().
@endverbatim
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32g0xx_hal.h"
/** @addtogroup STM32G0xx_HAL_Driver
* @{
*/
/** @addtogroup EXTI
* @{
*/
/** MISRA C:2012 deviation rule has been granted for following rule:
* Rule-18.1_b - Medium: Array `EXTICR' 1st subscript interval [0,7] may be out
* of bounds [0,3] in following API :
* HAL_EXTI_SetConfigLine
* HAL_EXTI_GetConfigLine
* HAL_EXTI_ClearConfigLine
*/
#ifdef HAL_EXTI_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private defines ------------------------------------------------------------*/
/** @defgroup EXTI_Private_Constants EXTI Private Constants
* @{
*/
#define EXTI_MODE_OFFSET 0x04u /* 0x10: offset between CPU IMR/EMR registers */
#define EXTI_CONFIG_OFFSET 0x08u /* 0x20: offset between CPU Rising/Falling configuration registers */
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup EXTI_Exported_Functions
* @{
*/
/** @addtogroup EXTI_Exported_Functions_Group1
* @brief Configuration functions
*
@verbatim
===============================================================================
##### Configuration functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Set configuration of a dedicated Exti line.
* @param hexti Exti handle.
* @param pExtiConfig Pointer on EXTI configuration to be set.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_SetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig)
{
__IO uint32_t *regaddr;
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
uint32_t offset;
/* Check null pointer */
if ((hexti == NULL) || (pExtiConfig == NULL))
{
return HAL_ERROR;
}
/* Check parameters */
assert_param(IS_EXTI_LINE(pExtiConfig->Line));
assert_param(IS_EXTI_MODE(pExtiConfig->Mode));
/* Assign line number to handle */
hexti->Line = pExtiConfig->Line;
/* compute line register offset and line mask */
offset = ((pExtiConfig->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT);
linepos = (pExtiConfig->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* Configure triggers for configurable lines */
if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u)
{
assert_param(IS_EXTI_TRIGGER(pExtiConfig->Trigger));
/* Configure rising trigger */
regaddr = (&EXTI->RTSR1 + (EXTI_CONFIG_OFFSET * offset));
regval = *regaddr;
/* Mask or set line */
if ((pExtiConfig->Trigger & EXTI_TRIGGER_RISING) != 0x00u)
{
regval |= maskline;
}
else
{
regval &= ~maskline;
}
/* Store rising trigger mode */
*regaddr = regval;
/* Configure falling trigger */
regaddr = (&EXTI->FTSR1 + (EXTI_CONFIG_OFFSET * offset));
regval = *regaddr;
/* Mask or set line */
if ((pExtiConfig->Trigger & EXTI_TRIGGER_FALLING) != 0x00u)
{
regval |= maskline;
}
else
{
regval &= ~maskline;
}
/* Store falling trigger mode */
*regaddr = regval;
/* Configure gpio port selection in case of gpio exti line */
if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO)
{
assert_param(IS_EXTI_GPIO_PORT(pExtiConfig->GPIOSel));
assert_param(IS_EXTI_GPIO_PIN(linepos));
regval = EXTI->EXTICR[linepos >> 2u];
regval &= ~(EXTI_EXTICR1_EXTI0 << (EXTI_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
regval |= (pExtiConfig->GPIOSel << (EXTI_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
EXTI->EXTICR[linepos >> 2u] = regval;
}
}
/* Configure interrupt mode : read current mode */
regaddr = (&EXTI->IMR1 + (EXTI_MODE_OFFSET * offset));
regval = *regaddr;
/* Mask or set line */
if ((pExtiConfig->Mode & EXTI_MODE_INTERRUPT) != 0x00u)
{
regval |= maskline;
}
else
{
regval &= ~maskline;
}
/* Store interrupt mode */
*regaddr = regval;
/* Configure event mode : read current mode */
regaddr = (&EXTI->EMR1 + (EXTI_MODE_OFFSET * offset));
regval = *regaddr;
/* Mask or set line */
if ((pExtiConfig->Mode & EXTI_MODE_EVENT) != 0x00u)
{
regval |= maskline;
}
else
{
regval &= ~maskline;
}
/* Store event mode */
*regaddr = regval;
return HAL_OK;
}
/**
* @brief Get configuration of a dedicated Exti line.
* @param hexti Exti handle.
* @param pExtiConfig Pointer on structure to store Exti configuration.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_GetConfigLine(EXTI_HandleTypeDef *hexti, EXTI_ConfigTypeDef *pExtiConfig)
{
__IO uint32_t *regaddr;
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
uint32_t offset;
/* Check null pointer */
if ((hexti == NULL) || (pExtiConfig == NULL))
{
return HAL_ERROR;
}
/* Check the parameter */
assert_param(IS_EXTI_LINE(hexti->Line));
/* Store handle line number to configiguration structure */
pExtiConfig->Line = hexti->Line;
/* compute line register offset and line mask */
offset = ((pExtiConfig->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT);
linepos = (pExtiConfig->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* 1] Get core mode : interrupt */
regaddr = (&EXTI->IMR1 + (EXTI_MODE_OFFSET * offset));
regval = *regaddr;
/* Check if selected line is enable */
if ((regval & maskline) != 0x00u)
{
pExtiConfig->Mode = EXTI_MODE_INTERRUPT;
}
else
{
pExtiConfig->Mode = EXTI_MODE_NONE;
}
/* Get event mode */
regaddr = (&EXTI->EMR1 + (EXTI_MODE_OFFSET * offset));
regval = *regaddr;
/* Check if selected line is enable */
if ((regval & maskline) != 0x00u)
{
pExtiConfig->Mode |= EXTI_MODE_EVENT;
}
/* Get default Trigger and GPIOSel configuration */
pExtiConfig->Trigger = EXTI_TRIGGER_NONE;
pExtiConfig->GPIOSel = 0x00u;
/* 2] Get trigger for configurable lines : rising */
if ((pExtiConfig->Line & EXTI_CONFIG) != 0x00u)
{
regaddr = (&EXTI->RTSR1 + (EXTI_CONFIG_OFFSET * offset));
regval = *regaddr;
/* Check if configuration of selected line is enable */
if ((regval & maskline) != 0x00u)
{
pExtiConfig->Trigger = EXTI_TRIGGER_RISING;
}
/* Get falling configuration */
regaddr = (&EXTI->FTSR1 + (EXTI_CONFIG_OFFSET * offset));
regval = *regaddr;
/* Check if configuration of selected line is enable */
if ((regval & maskline) != 0x00u)
{
pExtiConfig->Trigger |= EXTI_TRIGGER_FALLING;
}
/* Get Gpio port selection for gpio lines */
if ((pExtiConfig->Line & EXTI_GPIO) == EXTI_GPIO)
{
assert_param(IS_EXTI_GPIO_PIN(linepos));
regval = EXTI->EXTICR[linepos >> 2u];
pExtiConfig->GPIOSel = ((regval << (EXTI_EXTICR1_EXTI1_Pos * (3uL - (linepos & 0x03u)))) >> 24);
}
}
return HAL_OK;
}
/**
* @brief Clear whole configuration of a dedicated Exti line.
* @param hexti Exti handle.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_ClearConfigLine(EXTI_HandleTypeDef *hexti)
{
__IO uint32_t *regaddr;
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
uint32_t offset;
/* Check null pointer */
if (hexti == NULL)
{
return HAL_ERROR;
}
/* Check the parameter */
assert_param(IS_EXTI_LINE(hexti->Line));
/* compute line register offset and line mask */
offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT);
linepos = (hexti->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
/* 1] Clear interrupt mode */
regaddr = (&EXTI->IMR1 + (EXTI_MODE_OFFSET * offset));
regval = (*regaddr & ~maskline);
*regaddr = regval;
/* 2] Clear event mode */
regaddr = (&EXTI->EMR1 + (EXTI_MODE_OFFSET * offset));
regval = (*regaddr & ~maskline);
*regaddr = regval;
/* 3] Clear triggers in case of configurable lines */
if ((hexti->Line & EXTI_CONFIG) != 0x00u)
{
regaddr = (&EXTI->RTSR1 + (EXTI_CONFIG_OFFSET * offset));
regval = (*regaddr & ~maskline);
*regaddr = regval;
regaddr = (&EXTI->FTSR1 + (EXTI_CONFIG_OFFSET * offset));
regval = (*regaddr & ~maskline);
*regaddr = regval;
/* Get Gpio port selection for gpio lines */
if ((hexti->Line & EXTI_GPIO) == EXTI_GPIO)
{
assert_param(IS_EXTI_GPIO_PIN(linepos));
regval = EXTI->EXTICR[linepos >> 2u];
regval &= ~(EXTI_EXTICR1_EXTI0 << (EXTI_EXTICR1_EXTI1_Pos * (linepos & 0x03u)));
EXTI->EXTICR[linepos >> 2u] = regval;
}
}
return HAL_OK;
}
/**
* @brief Register callback for a dedicaated Exti line.
* @param hexti Exti handle.
* @param CallbackID User callback identifier.
* This parameter can be one of @arg @ref EXTI_CallbackIDTypeDef values.
* @param pPendingCbfn function pointer to be stored as callback.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_RegisterCallback(EXTI_HandleTypeDef *hexti, EXTI_CallbackIDTypeDef CallbackID, void (*pPendingCbfn)(void))
{
HAL_StatusTypeDef status = HAL_OK;
switch (CallbackID)
{
case HAL_EXTI_COMMON_CB_ID:
hexti->RisingCallback = pPendingCbfn;
hexti->FallingCallback = pPendingCbfn;
break;
case HAL_EXTI_RISING_CB_ID:
hexti->RisingCallback = pPendingCbfn;
break;
case HAL_EXTI_FALLING_CB_ID:
hexti->FallingCallback = pPendingCbfn;
break;
default:
status = HAL_ERROR;
break;
}
return status;
}
/**
* @brief Store line number as handle private field.
* @param hexti Exti handle.
* @param ExtiLine Exti line number.
* This parameter can be from 0 to @ref EXTI_LINE_NB.
* @retval HAL Status.
*/
HAL_StatusTypeDef HAL_EXTI_GetHandle(EXTI_HandleTypeDef *hexti, uint32_t ExtiLine)
{
/* Check the parameters */
assert_param(IS_EXTI_LINE(ExtiLine));
/* Check null pointer */
if (hexti == NULL)
{
return HAL_ERROR;
}
else
{
/* Store line number as handle private field */
hexti->Line = ExtiLine;
return HAL_OK;
}
}
/**
* @}
*/
/** @addtogroup EXTI_Exported_Functions_Group2
* @brief EXTI IO functions.
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Handle EXTI interrupt request.
* @param hexti Exti handle.
* @retval none.
*/
void HAL_EXTI_IRQHandler(EXTI_HandleTypeDef *hexti)
{
__IO uint32_t *regaddr;
uint32_t regval;
uint32_t maskline;
uint32_t offset;
/* Compute line register offset and line mask */
offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT);
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
/* Get rising edge pending bit */
regaddr = (&EXTI->RPR1 + (EXTI_CONFIG_OFFSET * offset));
regval = (*regaddr & maskline);
if (regval != 0x00u)
{
/* Clear pending bit */
*regaddr = maskline;
/* Call rising callback */
if (hexti->RisingCallback != NULL)
{
hexti->RisingCallback();
}
}
/* Get falling edge pending bit */
regaddr = (&EXTI->FPR1 + (EXTI_CONFIG_OFFSET * offset));
regval = (*regaddr & maskline);
if (regval != 0x00u)
{
/* Clear pending bit */
*regaddr = maskline;
/* Call rising callback */
if (hexti->FallingCallback != NULL)
{
hexti->FallingCallback();
}
}
}
/**
* @brief Get interrupt pending bit of a dedicated line.
* @param hexti Exti handle.
* @param Edge Specify which pending edge as to be checked.
* This parameter can be one of the following values:
* @arg @ref EXTI_TRIGGER_RISING
* @arg @ref EXTI_TRIGGER_FALLING
* @retval 1 if interrupt is pending else 0.
*/
uint32_t HAL_EXTI_GetPending(EXTI_HandleTypeDef *hexti, uint32_t Edge)
{
__IO uint32_t *regaddr;
uint32_t regval;
uint32_t linepos;
uint32_t maskline;
uint32_t offset;
/* Check parameters */
assert_param(IS_EXTI_LINE(hexti->Line));
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
assert_param(IS_EXTI_PENDING_EDGE(Edge));
/* compute line register offset and line mask */
offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT);
linepos = (hexti->Line & EXTI_PIN_MASK);
maskline = (1uL << linepos);
if (Edge != EXTI_TRIGGER_RISING)
{
/* Get falling edge pending bit */
regaddr = (&EXTI->FPR1 + (EXTI_CONFIG_OFFSET * offset));
}
else
{
/* Get rising edge pending bit */
regaddr = (&EXTI->RPR1 + (EXTI_CONFIG_OFFSET * offset));
}
/* return 1 if bit is set else 0 */
regval = ((*regaddr & maskline) >> linepos);
return regval;
}
/**
* @brief Clear interrupt pending bit of a dedicated line.
* @param hexti Exti handle.
* @param Edge Specify which pending edge as to be clear.
* This parameter can be one of the following values:
* @arg @ref EXTI_TRIGGER_RISING
* @arg @ref EXTI_TRIGGER_FALLING
* @retval None.
*/
void HAL_EXTI_ClearPending(EXTI_HandleTypeDef *hexti, uint32_t Edge)
{
__IO uint32_t *regaddr;
uint32_t maskline;
uint32_t offset;
/* Check parameters */
assert_param(IS_EXTI_LINE(hexti->Line));
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
assert_param(IS_EXTI_PENDING_EDGE(Edge));
/* compute line register offset and line mask */
offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT);
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
if (Edge != EXTI_TRIGGER_RISING)
{
/* Get falling edge pending register address */
regaddr = (&EXTI->FPR1 + (EXTI_CONFIG_OFFSET * offset));
}
else
{
/* Get falling edge pending register address */
regaddr = (&EXTI->RPR1 + (EXTI_CONFIG_OFFSET * offset));
}
/* Clear Pending bit */
*regaddr = maskline;
}
/**
* @brief Generate a software interrupt for a dedicated line.
* @param hexti Exti handle.
* @retval None.
*/
void HAL_EXTI_GenerateSWI(EXTI_HandleTypeDef *hexti)
{
__IO uint32_t *regaddr;
uint32_t maskline;
uint32_t offset;
/* Check parameterd */
assert_param(IS_EXTI_LINE(hexti->Line));
assert_param(IS_EXTI_CONFIG_LINE(hexti->Line));
/* compute line register offset and line mask */
offset = ((hexti->Line & EXTI_REG_MASK) >> EXTI_REG_SHIFT);
maskline = (1uL << (hexti->Line & EXTI_PIN_MASK));
regaddr = (&EXTI->SWIER1 + (EXTI_CONFIG_OFFSET * offset));
*regaddr = maskline;
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_EXTI_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

View File

@@ -0,0 +1,720 @@
/**
******************************************************************************
* @file stm32g0xx_hal_flash.c
* @author MCD Application Team
* @brief FLASH HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the internal FLASH memory:
* + Program operations functions
* + Memory Control functions
* + Peripheral Errors functions
*
@verbatim
==============================================================================
##### FLASH peripheral features #####
==============================================================================
[..] The Flash memory interface manages CPU AHB I-Code and D-Code accesses
to the Flash memory. It implements the erase and program Flash memory operations
and the read and write protection mechanisms.
[..] The Flash memory interface accelerates code execution with a system of instruction
prefetch and cache lines.
[..] The FLASH main features are:
(+) Flash memory read operations
(+) Flash memory program/erase operations
(+) Read / write protections
(+) Option bytes programming
(+) Prefetch on I-Code
(+) 32 cache lines of 4*64 bits on I-Code
(+) Error code correction (ECC) : Data in flash are 72-bits word
(8 bits added per double word)
##### How to use this driver #####
==============================================================================
[..]
This driver provides functions and macros to configure and program the FLASH
memory of all STM32G0xx devices.
(#) Flash Memory IO Programming functions:
(++) Lock and Unlock the FLASH interface using HAL_FLASH_Unlock() and
HAL_FLASH_Lock() functions
(++) Program functions: double word and fast program (full row programming)
(++) There are two modes of programming:
(+++) Polling mode using HAL_FLASH_Program() function
(+++) Interrupt mode using HAL_FLASH_Program_IT() function
(#) Interrupts and flags management functions:
(++) Handle FLASH interrupts by calling HAL_FLASH_IRQHandler()
(++) Callback functions are called when the flash operations are finished :
HAL_FLASH_EndOfOperationCallback() when everything is ok, otherwise
HAL_FLASH_OperationErrorCallback()
(++) Get error flag status by calling HAL_GetError()
(#) Option bytes management functions :
(++) Lock and Unlock the option bytes using HAL_FLASH_OB_Unlock() and
HAL_FLASH_OB_Lock() functions
(++) Launch the reload of the option bytes using HAL_FLASH_OB_Launch() function.
In this case, a reset is generated
[..]
In addition to these functions, this driver includes a set of macros allowing
to handle the following operations:
(+) Set the latency
(+) Enable/Disable the prefetch buffer
(+) Enable/Disable the Instruction cache
(+) Reset the Instruction cache
(+) Enable/Disable the Flash power-down during low-power run and sleep modes
(+) Enable/Disable the Flash interrupts
(+) Monitor the Flash flags status
@endverbatim
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file in
* the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32g0xx_hal.h"
/** @addtogroup STM32G0xx_HAL_Driver
* @{
*/
/** @defgroup FLASH FLASH
* @brief FLASH HAL module driver
* @{
*/
#ifdef HAL_FLASH_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private defines -----------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/** @defgroup FLASH_Private_Variables FLASH Private Variables
* @{
*/
/**
* @brief Variable used for Program/Erase sectors under interruption
*/
FLASH_ProcessTypeDef pFlash = {.Lock = HAL_UNLOCKED, \
.ErrorCode = HAL_FLASH_ERROR_NONE, \
.ProcedureOnGoing = FLASH_TYPENONE, \
.Address = 0U, \
.Banks = 0U, \
.Page = 0U, \
.NbPagesToErase = 0U
};
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/** @defgroup FLASH_Private_Functions FLASH Private Functions
* @{
*/
static void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data);
static void FLASH_Program_Fast(uint32_t Address, uint32_t DataAddress);
/**
* @}
*/
/* Exported functions --------------------------------------------------------*/
/** @defgroup FLASH_Exported_Functions FLASH Exported Functions
* @{
*/
/** @defgroup FLASH_Exported_Functions_Group1 Programming operation functions
* @brief Programming operation functions
*
@verbatim
===============================================================================
##### Programming operation functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to manage the FLASH
program operations.
@endverbatim
* @{
*/
/**
* @brief Program double word or fast program of a row at a specified address.
* @param TypeProgram Indicate the way to program at a specified address.
* This parameter can be a value of @ref FLASH_Type_Program
* @param Address Specifies the address to be programmed.
* @param Data Specifies the data to be programmed
* This parameter is the data for the double word program and the address where
* are stored the data for the row fast program depending on the TypeProgram:
* TypeProgram = FLASH_TYPEPROGRAM_DOUBLEWORD (64-bit)
* TypeProgram = FLASH_TYPEPROGRAM_FAST (32-bit).
*
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Program(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
{
HAL_StatusTypeDef status;
/* Check the parameters */
assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Reset error code */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
if (status == HAL_OK)
{
if (TypeProgram == FLASH_TYPEPROGRAM_DOUBLEWORD)
{
/* Check the parameters */
assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
/* Program double-word (64-bit) at a specified address */
FLASH_Program_DoubleWord(Address, Data);
}
else
{
/* Check the parameters */
assert_param(IS_FLASH_FAST_PROGRAM_ADDRESS(Address));
/* Fast program a 32 row double-word (64-bit) at a specified address */
FLASH_Program_Fast(Address, (uint32_t)Data);
}
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
/* If the program operation is completed, disable the PG or FSTPG Bit */
CLEAR_BIT(FLASH->CR, TypeProgram);
}
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
/* return status */
return status;
}
/**
* @brief Program double word or fast program of a row at a specified address with interrupt enabled.
* @param TypeProgram Indicate the way to program at a specified address.
* This parameter can be a value of @ref FLASH_Type_Program
* @param Address Specifies the address to be programmed.
* @param Data Specifies the data to be programmed
* This parameter is the data for the double word program and the address where
* are stored the data for the row fast program depending on the TypeProgram:
* TypeProgram = FLASH_TYPEPROGRAM_DOUBLEWORD (64-bit)
* TypeProgram = FLASH_TYPEPROGRAM_FAST (32-bit).
*
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Program_IT(uint32_t TypeProgram, uint32_t Address, uint64_t Data)
{
HAL_StatusTypeDef status;
/* Check the parameters */
assert_param(IS_FLASH_TYPEPROGRAM(TypeProgram));
/* Process Locked */
__HAL_LOCK(&pFlash);
/* Reset error code */
pFlash.ErrorCode = HAL_FLASH_ERROR_NONE;
/* Wait for last operation to be completed */
status = FLASH_WaitForLastOperation(FLASH_TIMEOUT_VALUE);
if (status != HAL_OK)
{
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
}
else
{
/* Set internal variables used by the IRQ handler */
pFlash.ProcedureOnGoing = TypeProgram;
pFlash.Address = Address;
/* Enable End of Operation and Error interrupts */
FLASH->CR |= FLASH_CR_EOPIE | FLASH_CR_ERRIE;
if (TypeProgram == FLASH_TYPEPROGRAM_DOUBLEWORD)
{
/* Check the parameters */
assert_param(IS_FLASH_PROGRAM_ADDRESS(Address));
/* Program double-word (64-bit) at a specified address */
FLASH_Program_DoubleWord(Address, Data);
}
else
{
/* Check the parameters */
assert_param(IS_FLASH_FAST_PROGRAM_ADDRESS(Address));
/* Fast program a 32 row double-word (64-bit) at a specified address */
FLASH_Program_Fast(Address, (uint32_t)Data);
}
}
/* return status */
return status;
}
/**
* @brief Handle FLASH interrupt request.
* @retval None
*/
void HAL_FLASH_IRQHandler(void)
{
uint32_t param;
uint32_t error;
/* Save flash errors. */
error = (FLASH->SR & FLASH_SR_ERRORS);
/* A] Set parameter for user or error callbacks */
/* check operation was a program or erase */
if ((pFlash.ProcedureOnGoing & FLASH_TYPEERASE_MASS) != 0x00U)
{
/* return bank number */
param = pFlash.Banks;
}
else
{
/* Clear operation only for page erase or program */
CLEAR_BIT(FLASH->CR, pFlash.ProcedureOnGoing);
if ((pFlash.ProcedureOnGoing & (FLASH_TYPEPROGRAM_DOUBLEWORD | FLASH_TYPEPROGRAM_FAST)) != 0x00U)
{
/* return address being programmed */
param = pFlash.Address;
}
else
{
/* return page number being erased */
param = pFlash.Page;
}
}
/* B] Check errors */
if (error != 0x00U)
{
/*Save the error code*/
pFlash.ErrorCode |= error;
/* clear error flags */
FLASH->SR = FLASH_SR_ERRORS;
/*Stop the procedure ongoing*/
pFlash.ProcedureOnGoing = FLASH_TYPENONE;
/* Error callback */
HAL_FLASH_OperationErrorCallback(param);
}
/* C] Check FLASH End of Operation flag */
if ((FLASH->SR & FLASH_SR_EOP) != 0x00U)
{
/* Clear FLASH End of Operation pending bit */
FLASH->SR = FLASH_SR_EOP;
if (pFlash.ProcedureOnGoing == FLASH_TYPEERASE_PAGES)
{
/* Nb of pages to erased can be decreased */
pFlash.NbPagesToErase--;
/* Check if there are still pages to erase*/
if (pFlash.NbPagesToErase != 0x00U)
{
/* Increment page number */
pFlash.Page++;
FLASH_PageErase(pFlash.Banks, pFlash.Page);
}
else
{
/* No more pages to erase: stop erase pages procedure */
pFlash.ProcedureOnGoing = FLASH_TYPENONE;
}
}
else
{
/*Stop the ongoing procedure */
pFlash.ProcedureOnGoing = FLASH_TYPENONE;
}
/* User callback */
HAL_FLASH_EndOfOperationCallback(param);
}
if (pFlash.ProcedureOnGoing == FLASH_TYPENONE)
{
/* Disable End of Operation and Error interrupts */
FLASH->CR &= ~(FLASH_CR_EOPIE | FLASH_CR_ERRIE);
/* Process Unlocked */
__HAL_UNLOCK(&pFlash);
}
}
/**
* @brief FLASH end of operation interrupt callback.
* @param ReturnValue The value saved in this parameter depends on the ongoing procedure
* Mass Erase: 0
* Page Erase: Page which has been erased
* Program: Address which was selected for data program
* @retval None
*/
__weak void HAL_FLASH_EndOfOperationCallback(uint32_t ReturnValue)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(ReturnValue);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_FLASH_EndOfOperationCallback could be implemented in the user file
*/
}
/**
* @brief FLASH operation error interrupt callback.
* @param ReturnValue The value saved in this parameter depends on the ongoing procedure
* Mass Erase: 0
* Page Erase: Page number which returned an error
* Program: Address which was selected for data program
* @retval None
*/
__weak void HAL_FLASH_OperationErrorCallback(uint32_t ReturnValue)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(ReturnValue);
/* NOTE : This function should not be modified, when the callback is needed,
the HAL_FLASH_OperationErrorCallback could be implemented in the user file
*/
}
/**
* @}
*/
/** @defgroup FLASH_Exported_Functions_Group2 Peripheral Control functions
* @brief Management functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..]
This subsection provides a set of functions allowing to control the FLASH
memory operations.
@endverbatim
* @{
*/
/**
* @brief Unlock the FLASH control register access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Unlock(void)
{
HAL_StatusTypeDef status = HAL_OK;
if (READ_BIT(FLASH->CR, FLASH_CR_LOCK) != 0x00U)
{
/* Authorize the FLASH Registers access */
WRITE_REG(FLASH->KEYR, FLASH_KEY1);
WRITE_REG(FLASH->KEYR, FLASH_KEY2);
/* verify Flash is unlock */
if (READ_BIT(FLASH->CR, FLASH_CR_LOCK) != 0x00U)
{
status = HAL_ERROR;
}
}
return status;
}
/**
* @brief Lock the FLASH control register access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_Lock(void)
{
HAL_StatusTypeDef status = HAL_ERROR;
/* Set the LOCK Bit to lock the FLASH Registers access */
SET_BIT(FLASH->CR, FLASH_CR_LOCK);
/* verify Flash is locked */
if (READ_BIT(FLASH->CR, FLASH_CR_LOCK) != 0x00u)
{
status = HAL_OK;
}
return status;
}
/**
* @brief Unlock the FLASH Option Bytes Registers access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Unlock(void)
{
HAL_StatusTypeDef status = HAL_ERROR;
if (READ_BIT(FLASH->CR, FLASH_CR_OPTLOCK) != 0x00U)
{
/* Authorizes the Option Byte register programming */
WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY1);
WRITE_REG(FLASH->OPTKEYR, FLASH_OPTKEY2);
/* verify option bytes are unlocked */
if (READ_BIT(FLASH->CR, FLASH_CR_OPTLOCK) == 0x00U)
{
status = HAL_OK;
}
}
return status;
}
/**
* @brief Lock the FLASH Option Bytes Registers access.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Lock(void)
{
HAL_StatusTypeDef status = HAL_ERROR;
/* Set the OPTLOCK Bit to lock the FLASH Option Byte Registers access */
SET_BIT(FLASH->CR, FLASH_CR_OPTLOCK);
/* verify option bytes are locked */
if (READ_BIT(FLASH->CR, FLASH_CR_OPTLOCK) != 0x00u)
{
status = HAL_OK;
}
return status;
}
/**
* @brief Launch the option byte loading.
* @retval HAL Status
*/
HAL_StatusTypeDef HAL_FLASH_OB_Launch(void)
{
/* Set the bit to force the option byte reloading */
SET_BIT(FLASH->CR, FLASH_CR_OBL_LAUNCH);
/* We should not reach here : Option byte launch generates Option byte reset
so return error */
return HAL_ERROR;
}
/**
* @}
*/
/** @defgroup FLASH_Exported_Functions_Group3 Peripheral State and Errors functions
* @brief Peripheral Errors functions
*
@verbatim
===============================================================================
##### Peripheral Errors functions #####
===============================================================================
[..]
This subsection permits to get in run-time Errors of the FLASH peripheral.
@endverbatim
* @{
*/
/**
* @brief Get the specific FLASH error flag.
* @retval FLASH_ErrorCode The returned value can be
* @arg @ref HAL_FLASH_ERROR_NONE No error set
* @arg @ref HAL_FLASH_ERROR_OP Operation error
* @arg @ref HAL_FLASH_ERROR_PROG Programming error
* @arg @ref HAL_FLASH_ERROR_WRP Write protection error
* @arg @ref HAL_FLASH_ERROR_PGA Programming alignment error
* @arg @ref HAL_FLASH_ERROR_SIZ Size error
* @arg @ref HAL_FLASH_ERROR_PGS Programming sequence error
* @arg @ref HAL_FLASH_ERROR_MIS Fast programming data miss error
* @arg @ref HAL_FLASH_ERROR_FAST Fast programming error
* @arg @ref HAL_FLASH_ERROR_RD Read Protection error (PCROP)(*)
* @arg @ref HAL_FLASH_ERROR_OPTV Option validity error
* @arg @ref HAL_FLASH_ERROR_ECCD two ECC errors have been detected
* @note (*) availability depends on devices
*/
uint32_t HAL_FLASH_GetError(void)
{
return pFlash.ErrorCode;
}
/**
* @}
*/
/**
* @}
*/
/* Private functions ---------------------------------------------------------*/
/** @addtogroup FLASH_Private_Functions
* @{
*/
/**
* @brief Wait for a FLASH operation to complete.
* @param Timeout maximum flash operation timeout
* @retval HAL_StatusTypeDef HAL Status
*/
HAL_StatusTypeDef FLASH_WaitForLastOperation(uint32_t Timeout)
{
uint32_t error;
/* Wait for the FLASH operation to complete by polling on BUSY flag to be reset.
Even if the FLASH operation fails, the BUSY flag will be reset and an error
flag will be set */
uint32_t timeout = HAL_GetTick() + Timeout;
/* Wait if any operation is ongoing */
#if defined(FLASH_DBANK_SUPPORT)
error = (FLASH_SR_BSY1 | FLASH_SR_BSY2);
#else
error = FLASH_SR_BSY1;
#endif /* FLASH_DBANK_SUPPORT */
while ((FLASH->SR & error) != 0x00U)
{
if (HAL_GetTick() >= timeout)
{
return HAL_TIMEOUT;
}
}
/* check flash errors */
error = (FLASH->SR & FLASH_SR_ERRORS);
/* Clear SR register */
FLASH->SR = FLASH_SR_CLEAR;
if (error != 0x00U)
{
/*Save the error code*/
pFlash.ErrorCode = error;
return HAL_ERROR;
}
/* Wait for control register to be written */
timeout = HAL_GetTick() + Timeout;
while ((FLASH->SR & FLASH_SR_CFGBSY) != 0x00U)
{
if (HAL_GetTick() >= timeout)
{
return HAL_TIMEOUT;
}
}
return HAL_OK;
}
/**
* @brief Program double-word (64-bit) at a specified address.
* @param Address Specifies the address to be programmed.
* @param Data Specifies the data to be programmed.
* @retval None
*/
static void FLASH_Program_DoubleWord(uint32_t Address, uint64_t Data)
{
/* Set PG bit */
SET_BIT(FLASH->CR, FLASH_CR_PG);
/* Program first word */
*(uint32_t *)Address = (uint32_t)Data;
/* Barrier to ensure programming is performed in 2 steps, in right order
(independently of compiler optimization behavior) */
__ISB();
/* Program second word */
*(uint32_t *)(Address + 4U) = (uint32_t)(Data >> 32U);
}
/**
* @brief Fast program a 32 row double-word (64-bit) at a specified address.
* @param Address Specifies the address to be programmed.
* @param DataAddress Specifies the address where the data are stored.
* @retval None
*/
static __RAM_FUNC void FLASH_Program_Fast(uint32_t Address, uint32_t DataAddress)
{
uint8_t index = 0;
uint32_t dest = Address;
uint32_t src = DataAddress;
uint32_t primask_bit;
/* Set FSTPG bit */
SET_BIT(FLASH->CR, FLASH_CR_FSTPG);
/* Enter critical section: row programming should not be longer than 7 ms */
primask_bit = __get_PRIMASK();
__disable_irq();
/* Fast Program : 64 words */
while (index < 64U)
{
*(uint32_t *)dest = *(uint32_t *)src;
src += 4U;
dest += 4U;
index++;
}
/* wait for BSY1 in order to be sure that flash operation is ended befoire
allowing prefetch in flash. Timeout does not return status, as it will
be anyway done later */
#if defined(FLASH_DBANK_SUPPORT)
while ((FLASH->SR & (FLASH_SR_BSY1 | FLASH_SR_BSY2)) != 0x00U)
#else
while ((FLASH->SR & FLASH_SR_BSY1) != 0x00U)
#endif /* FLASH_DBANK_SUPPORT */
{
}
/* Exit critical section: restore previous priority mask */
__set_PRIMASK(primask_bit);
}
/**
* @}
*/
#endif /* HAL_FLASH_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,550 @@
/**
******************************************************************************
* @file stm32g0xx_hal_gpio.c
* @author MCD Application Team
* @brief GPIO HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the General Purpose Input/Output (GPIO) peripheral:
* + Initialization and de-initialization functions
* + IO operation functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### GPIO Peripheral features #####
==============================================================================
[..]
(+) Each port bit of the general-purpose I/O (GPIO) ports can be individually
configured by software in several modes:
(++) Input mode
(++) Analog mode
(++) Output mode
(++) Alternate function mode
(++) External interrupt/event lines
(+) During and just after reset, the alternate functions and external interrupt
lines are not active and the I/O ports are configured in input floating mode.
(+) All GPIO pins have weak internal pull-up and pull-down resistors, which can be
activated or not.
(+) In Output or Alternate mode, each IO can be configured on open-drain or push-pull
type and the IO speed can be selected depending on the VDD value.
(+) The microcontroller IO pins are connected to onboard peripherals/modules through a
multiplexer that allows only one peripheral alternate function (AF) connected
to an IO pin at a time. In this way, there can be no conflict between peripherals
sharing the same IO pin.
(+) All ports have external interrupt/event capability. To use external interrupt
lines, the port must be configured in input mode. All available GPIO pins are
connected to the 16 external interrupt/event lines from EXTI0 to EXTI15.
(+) The external interrupt/event controller consists of up to 28 edge detectors
(16 lines are connected to GPIO) for generating event/interrupt requests (each
input line can be independently configured to select the type (interrupt or event)
and the corresponding trigger event (rising or falling or both). Each line can
also be masked independently.
##### How to use this driver #####
==============================================================================
[..]
(#) Enable the GPIO AHB clock using the following function: __HAL_RCC_GPIOx_CLK_ENABLE().
(#) Configure the GPIO pin(s) using HAL_GPIO_Init().
(++) Configure the IO mode using "Mode" member from GPIO_InitTypeDef structure
(++) Activate Pull-up, Pull-down resistor using "Pull" member from GPIO_InitTypeDef
structure.
(++) In case of Output or alternate function mode selection: the speed is
configured through "Speed" member from GPIO_InitTypeDef structure.
(++) In alternate mode is selection, the alternate function connected to the IO
is configured through "Alternate" member from GPIO_InitTypeDef structure.
(++) Analog mode is required when a pin is to be used as ADC channel
or DAC output.
(++) In case of external interrupt/event selection the "Mode" member from
GPIO_InitTypeDef structure select the type (interrupt or event) and
the corresponding trigger event (rising or falling or both).
(#) In case of external interrupt/event mode selection, configure NVIC IRQ priority
mapped to the EXTI line using HAL_NVIC_SetPriority() and enable it using
HAL_NVIC_EnableIRQ().
(#) To get the level of a pin configured in input mode use HAL_GPIO_ReadPin().
(#) To set/reset the level of a pin configured in output mode use
HAL_GPIO_WritePin()/HAL_GPIO_TogglePin().
(#) To lock pin configuration until next reset use HAL_GPIO_LockPin().
(#) During and just after reset, the alternate functions are not
active and the GPIO pins are configured in input floating mode (except JTAG
pins).
(#) The LSE oscillator pins OSC32_IN and OSC32_OUT can be used as general purpose
(PC14 and PC15, respectively) when the LSE oscillator is off. The LSE has
priority over the GPIO function.
(#) The HSE oscillator pins OSC_IN/OSC_OUT can be used as
general purpose PF0 and PF1, respectively, when the HSE oscillator is off.
The HSE has priority over the GPIO function.
@endverbatim
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32g0xx_hal.h"
/** @addtogroup STM32G0xx_HAL_Driver
* @{
*/
/** @addtogroup GPIO
* @{
*/
/** MISRA C:2012 deviation rule has been granted for following rules:
* Rule-12.2 - Medium: RHS argument is in interval [0,INF] which is out of
* range of the shift operator in following API :
* HAL_GPIO_Init
* HAL_GPIO_DeInit
*/
#ifdef HAL_GPIO_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private defines ------------------------------------------------------------*/
/** @addtogroup GPIO_Private_Constants
* @{
*/
#define GPIO_NUMBER (16u)
/**
* @}
*/
/* Private macros ------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup GPIO_Exported_Functions
* @{
*/
/** @addtogroup GPIO_Exported_Functions_Group1
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Initialize the GPIOx peripheral according to the specified parameters in the GPIO_Init.
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32G0xx family
* @param GPIO_Init pointer to a GPIO_InitTypeDef structure that contains
* the configuration information for the specified GPIO peripheral.
* @retval None
*/
void HAL_GPIO_Init(GPIO_TypeDef *GPIOx, GPIO_InitTypeDef *GPIO_Init)
{
uint32_t position = 0x00u;
uint32_t iocurrent;
uint32_t temp;
/* Check the parameters */
assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Init->Pin));
assert_param(IS_GPIO_MODE(GPIO_Init->Mode));
/* Configure the port pins */
while (((GPIO_Init->Pin) >> position) != 0x00u)
{
/* Get current io position */
iocurrent = (GPIO_Init->Pin) & (1uL << position);
if (iocurrent != 0x00u)
{
/*--------------------- GPIO Mode Configuration ------------------------*/
/* In case of Output or Alternate function mode selection */
if (((GPIO_Init->Mode & GPIO_MODE) == MODE_OUTPUT) || ((GPIO_Init->Mode & GPIO_MODE) == MODE_AF))
{
/* Check the Speed parameter */
assert_param(IS_GPIO_SPEED(GPIO_Init->Speed));
/* Configure the IO Speed */
temp = GPIOx->OSPEEDR;
temp &= ~(GPIO_OSPEEDR_OSPEED0 << (position * 2u));
temp |= (GPIO_Init->Speed << (position * 2u));
GPIOx->OSPEEDR = temp;
/* Configure the IO Output Type */
temp = GPIOx->OTYPER;
temp &= ~(GPIO_OTYPER_OT0 << position) ;
temp |= (((GPIO_Init->Mode & OUTPUT_TYPE) >> OUTPUT_TYPE_Pos) << position);
GPIOx->OTYPER = temp;
}
if ((GPIO_Init->Mode & GPIO_MODE) != MODE_ANALOG)
{
/* Check the Pull parameter */
assert_param(IS_GPIO_PULL(GPIO_Init->Pull));
/* Activate the Pull-up or Pull down resistor for the current IO */
temp = GPIOx->PUPDR;
temp &= ~(GPIO_PUPDR_PUPD0 << (position * 2u));
temp |= ((GPIO_Init->Pull) << (position * 2u));
GPIOx->PUPDR = temp;
}
/* In case of Alternate function mode selection */
if ((GPIO_Init->Mode & GPIO_MODE) == MODE_AF)
{
/* Check the Alternate function parameters */
assert_param(IS_GPIO_AF_INSTANCE(GPIOx));
assert_param(IS_GPIO_AF(GPIO_Init->Alternate));
/* Configure Alternate function mapped with the current IO */
temp = GPIOx->AFR[position >> 3u];
temp &= ~(0xFu << ((position & 0x07u) * 4u));
temp |= ((GPIO_Init->Alternate) << ((position & 0x07u) * 4u));
GPIOx->AFR[position >> 3u] = temp;
}
/* Configure IO Direction mode (Input, Output, Alternate or Analog) */
temp = GPIOx->MODER;
temp &= ~(GPIO_MODER_MODE0 << (position * 2u));
temp |= ((GPIO_Init->Mode & GPIO_MODE) << (position * 2u));
GPIOx->MODER = temp;
/*--------------------- EXTI Mode Configuration ------------------------*/
/* Configure the External Interrupt or event for the current IO */
if ((GPIO_Init->Mode & EXTI_MODE) != 0x00u)
{
temp = EXTI->EXTICR[position >> 2u];
temp &= ~(0x0FuL << (8u * (position & 0x03u)));
temp |= (GPIO_GET_INDEX(GPIOx) << (8u * (position & 0x03u)));
EXTI->EXTICR[position >> 2u] = temp;
/* Clear Rising Falling edge configuration */
temp = EXTI->RTSR1;
temp &= ~(iocurrent);
if ((GPIO_Init->Mode & TRIGGER_RISING) != 0x00u)
{
temp |= iocurrent;
}
EXTI->RTSR1 = temp;
temp = EXTI->FTSR1;
temp &= ~(iocurrent);
if ((GPIO_Init->Mode & TRIGGER_FALLING) != 0x00u)
{
temp |= iocurrent;
}
EXTI->FTSR1 = temp;
/* Clear EXTI line configuration */
temp = EXTI->EMR1;
temp &= ~(iocurrent);
if ((GPIO_Init->Mode & EXTI_EVT) != 0x00u)
{
temp |= iocurrent;
}
EXTI->EMR1 = temp;
temp = EXTI->IMR1;
temp &= ~(iocurrent);
if ((GPIO_Init->Mode & EXTI_IT) != 0x00u)
{
temp |= iocurrent;
}
EXTI->IMR1 = temp;
}
}
position++;
}
}
/**
* @brief De-initialize the GPIOx peripheral registers to their default reset values.
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32G0xx family
* @param GPIO_Pin specifies the port bit to be written.
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
* @retval None
*/
void HAL_GPIO_DeInit(GPIO_TypeDef *GPIOx, uint32_t GPIO_Pin)
{
uint32_t position = 0x00u;
uint32_t iocurrent;
uint32_t tmp;
/* Check the parameters */
assert_param(IS_GPIO_ALL_INSTANCE(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Pin));
/* Configure the port pins */
while ((GPIO_Pin >> position) != 0x00u)
{
/* Get current io position */
iocurrent = (GPIO_Pin) & (1uL << position);
if (iocurrent != 0x00u)
{
/*------------------------- EXTI Mode Configuration --------------------*/
/* Clear the External Interrupt or Event for the current IO */
tmp = EXTI->EXTICR[position >> 2u];
tmp &= (0x0FuL << (8u * (position & 0x03u)));
if (tmp == (GPIO_GET_INDEX(GPIOx) << (8u * (position & 0x03u))))
{
/* Clear EXTI line configuration */
EXTI->IMR1 &= ~(iocurrent);
EXTI->EMR1 &= ~(iocurrent);
/* Clear Rising Falling edge configuration */
EXTI->FTSR1 &= ~(iocurrent);
EXTI->RTSR1 &= ~(iocurrent);
tmp = 0x0FuL << (8u * (position & 0x03u));
EXTI->EXTICR[position >> 2u] &= ~tmp;
}
/*------------------------- GPIO Mode Configuration --------------------*/
/* Configure IO in Analog Mode */
GPIOx->MODER |= (GPIO_MODER_MODE0 << (position * 2u));
/* Configure the default Alternate Function in current IO */
GPIOx->AFR[position >> 3u] &= ~(0xFu << ((position & 0x07u) * 4u)) ;
/* Configure the default value for IO Speed */
GPIOx->OSPEEDR &= ~(GPIO_OSPEEDR_OSPEED0 << (position * 2u));
/* Configure the default value IO Output Type */
GPIOx->OTYPER &= ~(GPIO_OTYPER_OT0 << position) ;
/* Deactivate the Pull-up and Pull-down resistor for the current IO */
GPIOx->PUPDR &= ~(GPIO_PUPDR_PUPD0 << (position * 2u));
}
position++;
}
}
/**
* @}
*/
/** @addtogroup GPIO_Exported_Functions_Group2
* @brief GPIO Read, Write, Toggle, Lock and EXTI management functions.
*
@verbatim
===============================================================================
##### IO operation functions #####
===============================================================================
@endverbatim
* @{
*/
/**
* @brief Read the specified input port pin.
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32G0xx family
* @param GPIO_Pin specifies the port bit to read.
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
* @retval The input port pin value.
*/
GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin)
{
GPIO_PinState bitstatus;
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
if ((GPIOx->IDR & GPIO_Pin) != 0x00u)
{
bitstatus = GPIO_PIN_SET;
}
else
{
bitstatus = GPIO_PIN_RESET;
}
return bitstatus;
}
/**
* @brief Set or clear the selected data port bit.
*
* @note This function uses GPIOx_BSRR and GPIOx_BRR registers to allow atomic read/modify
* accesses. In this way, there is no risk of an IRQ occurring between
* the read and the modify access.
*
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32G0xx family
* @param GPIO_Pin specifies the port bit to be written.
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
* @param PinState specifies the value to be written to the selected bit.
* This parameter can be one of the GPIO_PinState enum values:
* @arg GPIO_PIN_RESET: to clear the port pin
* @arg GPIO_PIN_SET: to set the port pin
* @retval None
*/
void HAL_GPIO_WritePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin, GPIO_PinState PinState)
{
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
assert_param(IS_GPIO_PIN_ACTION(PinState));
if (PinState != GPIO_PIN_RESET)
{
GPIOx->BSRR = (uint32_t)GPIO_Pin;
}
else
{
GPIOx->BRR = (uint32_t)GPIO_Pin;
}
}
/**
* @brief Toggle the specified GPIO pin.
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32G0xx family
* @param GPIO_Pin specifies the pin to be toggled.
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
* @retval None
*/
void HAL_GPIO_TogglePin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin)
{
uint32_t odr;
/* Check the parameters */
assert_param(IS_GPIO_PIN(GPIO_Pin));
/* get current Output Data Register value */
odr = GPIOx->ODR;
/* Set selected pins that were at low level, and reset ones that were high */
GPIOx->BSRR = ((odr & GPIO_Pin) << GPIO_NUMBER) | (~odr & GPIO_Pin);
}
/**
* @brief Lock GPIO Pins configuration registers.
* @note The locked registers are GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR,
* GPIOx_PUPDR, GPIOx_AFRL and GPIOx_AFRH.
* @note The configuration of the locked GPIO pins can no longer be modified
* until the next reset.
* @param GPIOx where x can be (A..F) to select the GPIO peripheral for STM32G0xx family
* @param GPIO_Pin specifies the port bits to be locked.
* This parameter can be any combination of GPIO_Pin_x where x can be (0..15).
* @retval None
*/
HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef *GPIOx, uint16_t GPIO_Pin)
{
__IO uint32_t tmp = GPIO_LCKR_LCKK;
/* Check the parameters */
assert_param(IS_GPIO_LOCK_INSTANCE(GPIOx));
assert_param(IS_GPIO_PIN(GPIO_Pin));
/* Apply lock key write sequence */
tmp |= GPIO_Pin;
/* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
GPIOx->LCKR = tmp;
/* Reset LCKx bit(s): LCKK='0' + LCK[15-0] */
GPIOx->LCKR = GPIO_Pin;
/* Set LCKx bit(s): LCKK='1' + LCK[15-0] */
GPIOx->LCKR = tmp;
/* Read LCKK register. This read is mandatory to complete key lock sequence */
tmp = GPIOx->LCKR;
/* read again in order to confirm lock is active */
if ((GPIOx->LCKR & GPIO_LCKR_LCKK) != 0x00u)
{
return HAL_OK;
}
else
{
return HAL_ERROR;
}
}
/**
* @brief Handle EXTI interrupt request.
* @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line.
* @retval None
*/
void HAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin)
{
/* EXTI line interrupt detected */
if (__HAL_GPIO_EXTI_GET_RISING_IT(GPIO_Pin) != 0x00u)
{
__HAL_GPIO_EXTI_CLEAR_RISING_IT(GPIO_Pin);
HAL_GPIO_EXTI_Rising_Callback(GPIO_Pin);
}
if (__HAL_GPIO_EXTI_GET_FALLING_IT(GPIO_Pin) != 0x00u)
{
__HAL_GPIO_EXTI_CLEAR_FALLING_IT(GPIO_Pin);
HAL_GPIO_EXTI_Falling_Callback(GPIO_Pin);
}
}
/**
* @brief EXTI line detection callback.
* @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line.
* @retval None
*/
__weak void HAL_GPIO_EXTI_Rising_Callback(uint16_t GPIO_Pin)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(GPIO_Pin);
/* NOTE: This function should not be modified, when the callback is needed,
the HAL_GPIO_EXTI_Rising_Callback could be implemented in the user file
*/
}
/**
* @brief EXTI line detection callback.
* @param GPIO_Pin Specifies the port pin connected to corresponding EXTI line.
* @retval None
*/
__weak void HAL_GPIO_EXTI_Falling_Callback(uint16_t GPIO_Pin)
{
/* Prevent unused argument(s) compilation warning */
UNUSED(GPIO_Pin);
/* NOTE: This function should not be modified, when the callback is needed,
the HAL_GPIO_EXTI_Falling_Callback could be implemented in the user file
*/
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_GPIO_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,364 @@
/**
******************************************************************************
* @file stm32g0xx_hal_i2c_ex.c
* @author MCD Application Team
* @brief I2C Extended HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of I2C Extended peripheral:
* + Filter Mode Functions
* + WakeUp Mode Functions
* + FastModePlus Functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
@verbatim
==============================================================================
##### I2C peripheral Extended features #####
==============================================================================
[..] Comparing to other previous devices, the I2C interface for STM32G0xx
devices contains the following additional features
(+) Possibility to disable or enable Analog Noise Filter
(+) Use of a configured Digital Noise Filter
(+) Disable or enable wakeup from Stop mode(s)
(+) Disable or enable Fast Mode Plus
##### How to use this driver #####
==============================================================================
[..] This driver provides functions to configure Noise Filter and Wake Up Feature
(#) Configure I2C Analog noise filter using the function HAL_I2CEx_ConfigAnalogFilter()
(#) Configure I2C Digital noise filter using the function HAL_I2CEx_ConfigDigitalFilter()
(#) Configure the enable or disable of I2C Wake Up Mode using the functions :
(++) HAL_I2CEx_EnableWakeUp()
(++) HAL_I2CEx_DisableWakeUp()
(#) Configure the enable or disable of fast mode plus driving capability using the functions :
(++) HAL_I2CEx_EnableFastModePlus()
(++) HAL_I2CEx_DisableFastModePlus()
@endverbatim
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32g0xx_hal.h"
/** @addtogroup STM32G0xx_HAL_Driver
* @{
*/
/** @defgroup I2CEx I2CEx
* @brief I2C Extended HAL module driver
* @{
*/
#ifdef HAL_I2C_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup I2CEx_Exported_Functions I2C Extended Exported Functions
* @{
*/
/** @defgroup I2CEx_Exported_Functions_Group1 Filter Mode Functions
* @brief Filter Mode Functions
*
@verbatim
===============================================================================
##### Filter Mode Functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure Noise Filters
@endverbatim
* @{
*/
/**
* @brief Configure I2C Analog noise filter.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2Cx peripheral.
* @param AnalogFilter New state of the Analog filter.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2CEx_ConfigAnalogFilter(I2C_HandleTypeDef *hi2c, uint32_t AnalogFilter)
{
/* Check the parameters */
assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
assert_param(IS_I2C_ANALOG_FILTER(AnalogFilter));
if (hi2c->State == HAL_I2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hi2c);
hi2c->State = HAL_I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
__HAL_I2C_DISABLE(hi2c);
/* Reset I2Cx ANOFF bit */
hi2c->Instance->CR1 &= ~(I2C_CR1_ANFOFF);
/* Set analog filter bit*/
hi2c->Instance->CR1 |= AnalogFilter;
__HAL_I2C_ENABLE(hi2c);
hi2c->State = HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Configure I2C Digital noise filter.
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2Cx peripheral.
* @param DigitalFilter Coefficient of digital noise filter between Min_Data=0x00 and Max_Data=0x0F.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2CEx_ConfigDigitalFilter(I2C_HandleTypeDef *hi2c, uint32_t DigitalFilter)
{
uint32_t tmpreg;
/* Check the parameters */
assert_param(IS_I2C_ALL_INSTANCE(hi2c->Instance));
assert_param(IS_I2C_DIGITAL_FILTER(DigitalFilter));
if (hi2c->State == HAL_I2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hi2c);
hi2c->State = HAL_I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
__HAL_I2C_DISABLE(hi2c);
/* Get the old register value */
tmpreg = hi2c->Instance->CR1;
/* Reset I2Cx DNF bits [11:8] */
tmpreg &= ~(I2C_CR1_DNF);
/* Set I2Cx DNF coefficient */
tmpreg |= DigitalFilter << 8U;
/* Store the new register value */
hi2c->Instance->CR1 = tmpreg;
__HAL_I2C_ENABLE(hi2c);
hi2c->State = HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @}
*/
/** @defgroup I2CEx_Exported_Functions_Group2 WakeUp Mode Functions
* @brief WakeUp Mode Functions
*
@verbatim
===============================================================================
##### WakeUp Mode Functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure Wake Up Feature
@endverbatim
* @{
*/
/**
* @brief Enable I2C wakeup from Stop mode(s).
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2Cx peripheral.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2CEx_EnableWakeUp(I2C_HandleTypeDef *hi2c)
{
/* Check the parameters */
assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance));
if (hi2c->State == HAL_I2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hi2c);
hi2c->State = HAL_I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
__HAL_I2C_DISABLE(hi2c);
/* Enable wakeup from stop mode */
hi2c->Instance->CR1 |= I2C_CR1_WUPEN;
__HAL_I2C_ENABLE(hi2c);
hi2c->State = HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @brief Disable I2C wakeup from Stop mode(s).
* @param hi2c Pointer to a I2C_HandleTypeDef structure that contains
* the configuration information for the specified I2Cx peripheral.
* @retval HAL status
*/
HAL_StatusTypeDef HAL_I2CEx_DisableWakeUp(I2C_HandleTypeDef *hi2c)
{
/* Check the parameters */
assert_param(IS_I2C_WAKEUP_FROMSTOP_INSTANCE(hi2c->Instance));
if (hi2c->State == HAL_I2C_STATE_READY)
{
/* Process Locked */
__HAL_LOCK(hi2c);
hi2c->State = HAL_I2C_STATE_BUSY;
/* Disable the selected I2C peripheral */
__HAL_I2C_DISABLE(hi2c);
/* Enable wakeup from stop mode */
hi2c->Instance->CR1 &= ~(I2C_CR1_WUPEN);
__HAL_I2C_ENABLE(hi2c);
hi2c->State = HAL_I2C_STATE_READY;
/* Process Unlocked */
__HAL_UNLOCK(hi2c);
return HAL_OK;
}
else
{
return HAL_BUSY;
}
}
/**
* @}
*/
/** @defgroup I2CEx_Exported_Functions_Group3 Fast Mode Plus Functions
* @brief Fast Mode Plus Functions
*
@verbatim
===============================================================================
##### Fast Mode Plus Functions #####
===============================================================================
[..] This section provides functions allowing to:
(+) Configure Fast Mode Plus
@endverbatim
* @{
*/
/**
* @brief Enable the I2C fast mode plus driving capability.
* @param ConfigFastModePlus Selects the pin.
* This parameter can be one of the @ref I2CEx_FastModePlus values
* @note For I2C1, fast mode plus driving capability can be enabled on all selected
* I2C1 pins using I2C_FASTMODEPLUS_I2C1 parameter or independently
* on each one of the following pins PB6, PB7, PB8 and PB9.
* @note For remaining I2C1 pins (PA14, PA15...) fast mode plus driving capability
* can be enabled only by using I2C_FASTMODEPLUS_I2C1 parameter.
* @note For all I2C2 pins fast mode plus driving capability can be enabled
* only by using I2C_FASTMODEPLUS_I2C2 parameter.
* @note For all I2C3 pins fast mode plus driving capability can be enabled
* only by using I2C_FASTMODEPLUS_I2C3 parameter.
* @retval None
*/
void HAL_I2CEx_EnableFastModePlus(uint32_t ConfigFastModePlus)
{
/* Check the parameter */
assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus));
/* Enable SYSCFG clock */
__HAL_RCC_SYSCFG_CLK_ENABLE();
/* Enable fast mode plus driving capability for selected pin */
SET_BIT(SYSCFG->CFGR1, (uint32_t)ConfigFastModePlus);
}
/**
* @brief Disable the I2C fast mode plus driving capability.
* @param ConfigFastModePlus Selects the pin.
* This parameter can be one of the @ref I2CEx_FastModePlus values
* @note For I2C1, fast mode plus driving capability can be disabled on all selected
* I2C1 pins using I2C_FASTMODEPLUS_I2C1 parameter or independently
* on each one of the following pins PB6, PB7, PB8 and PB9.
* @note For remaining I2C1 pins (PA14, PA15...) fast mode plus driving capability
* can be disabled only by using I2C_FASTMODEPLUS_I2C1 parameter.
* @note For all I2C2 pins fast mode plus driving capability can be disabled
* only by using I2C_FASTMODEPLUS_I2C2 parameter.
* @note For all I2C3 pins fast mode plus driving capability can be disabled
* only by using I2C_FASTMODEPLUS_I2C3 parameter.
* @retval None
*/
void HAL_I2CEx_DisableFastModePlus(uint32_t ConfigFastModePlus)
{
/* Check the parameter */
assert_param(IS_I2C_FASTMODEPLUS(ConfigFastModePlus));
/* Enable SYSCFG clock */
__HAL_RCC_SYSCFG_CLK_ENABLE();
/* Disable fast mode plus driving capability for selected pin */
CLEAR_BIT(SYSCFG->CFGR1, (uint32_t)ConfigFastModePlus);
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_I2C_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

View File

@@ -0,0 +1,542 @@
/**
******************************************************************************
* @file stm32g0xx_hal_pwr.c
* @author MCD Application Team
* @brief PWR HAL module driver.
* This file provides firmware functions to manage the following
* functionalities of the Power Controller (PWR) peripheral:
* + Initialization/de-initialization functions
* + Peripheral Control functions
*
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32g0xx_hal.h"
/** @addtogroup STM32G0xx_HAL_Driver
* @{
*/
/** @addtogroup PWR
* @{
*/
#ifdef HAL_PWR_MODULE_ENABLED
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/** @defgroup PWR_Private_Defines PWR Private Defines
* @{
*/
/**
* @}
*/
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup PWR_Exported_Functions PWR Exported Functions
* @{
*/
/** @addtogroup PWR_Exported_Functions_Group1 Initialization and de-initialization functions
* @brief Initialization and de-initialization functions
*
@verbatim
===============================================================================
##### Initialization and de-initialization functions #####
===============================================================================
[..]
@endverbatim
* @{
*/
/**
* @brief Deinitialize the HAL PWR peripheral registers to their default reset
values.
* @retval None
*/
void HAL_PWR_DeInit(void)
{
__HAL_RCC_PWR_FORCE_RESET();
__HAL_RCC_PWR_RELEASE_RESET();
}
/**
* @}
*/
/** @addtogroup PWR_Exported_Functions_Group2 Peripheral Control functions
* @brief Low Power modes configuration functions
*
@verbatim
===============================================================================
##### Peripheral Control functions #####
===============================================================================
[..]
*** WakeUp pin configuration ***
================================
[..]
(+) WakeUp pins are used to wakeup the system from Standby mode or
Shutdown mode. WakeUp pins polarity can be set to configure event
detection on high level (rising edge) or low level (falling edge).
*** Low Power mode configuration ***
=====================================
[..]
The devices feature 7 low-power modes:
(+) Low-power run mode: core and peripherals are running at low frequency.
Regulator is in low power mode.
(+) Sleep mode: Cortex-M0+ core stopped, peripherals kept running,
regulator is main mode.
(+) Low-power Sleep mode: Cortex-M0+ core stopped, peripherals kept running
and regulator in low power mode.
(+) Stop 0 mode: all clocks are stopped except LSI and LSE, regulator is
main mode.
(+) Stop 1 mode: all clocks are stopped except LSI and LSE, main regulator
off, low power regulator on.
(+) Standby mode: all clocks are stopped except LSI and LSE, regulator is
disable.
(+) Shutdown mode: all clocks are stopped except LSE, regulator is
disable.
*** Low-power run mode ***
==========================
[..]
(+) Entry: (from main run mode)
(++) set LPR bit with HAL_PWREx_EnableLowPowerRunMode() API after
having decreased the system clock below 2 MHz.
(+) Exit:
(++) clear LPR bit then wait for REGLPF bit to be reset with
HAL_PWREx_DisableLowPowerRunMode() API. Only then can the
system clock frequency be increased above 2 MHz.
*** Sleep mode / Low-power sleep mode ***
=========================================
[..]
(+) Entry:
The Sleep & Low-power Sleep modes are entered through
HAL_PWR_EnterSLEEPMode() API specifying whether or not the regulator
is forced to low-power mode and if exit is interrupt or event
triggered.
(++) PWR_MAINREGULATOR_ON: Sleep mode (regulator in main mode).
(++) PWR_LOWPOWERREGULATOR_ON: Low-power Sleep mode (regulator in low
power mode). In this case, the system clock frequency must have
been decreased below 2 MHz beforehand.
(++) PWR_SLEEPENTRY_WFI: Core enters sleep mode with WFI instruction
(++) PWR_SLEEPENTRY_WFE: Core enters sleep mode with WFE instruction
(+) WFI Exit:
(++) Any interrupt enabled in nested vectored interrupt controller (NVIC)
(+) WFE Exit:
(++) Any wakeup event if cortex is configured with SEVONPEND = 0
(++) Interrupt even when disabled in NVIC if cortex is configured with
SEVONPEND = 1
[..] When exiting the Low-power Sleep mode by issuing an interrupt or a wakeup event,
the MCU is in Low-power Run mode.
*** Stop 0 & Stop 1 modes ***
=============================
[..]
(+) Entry:
The Stop modes are entered through the following APIs:
(++) HAL_PWR_EnterSTOPMode() with following settings:
(+++) PWR_MAINREGULATOR_ON to enter STOP0 mode.
(+++) PWR_LOWPOWERREGULATOR_ON to enter STOP1 mode.
(+) Exit (interrupt or event-triggered, specified when entering STOP mode):
(++) PWR_STOPENTRY_WFI: enter Stop mode with WFI instruction
(++) PWR_STOPENTRY_WFE: enter Stop mode with WFE instruction
(+) WFI Exit:
(++) Any EXTI line (internal or external) configured in interrupt mode
with corresponding interrupt enable in NVIC
(+) WFE Exit:
(++) Any EXTI line (internal or external) configured in event mode if
cortex is configured with SEVONPEND = 0
(++) Any EXTI line configured in interrupt mode (even if the
corresponding EXTI Interrupt vector is disabled in the NVIC) if
cortex is configured with SEVONPEND = 0. The interrupt source can
be external interrupts or peripherals with wakeup capability.
[..] When exiting Stop, the MCU is either in Run mode or in Low-power Run mode
depending on the LPR bit setting.
*** Standby mode ***
====================
[..] In Standby mode, it is possible to keep backup SRAM content (defined as
full SRAM) keeping low power regulator on. This is achievable by setting
Ram retention bit calling HAL_PWREx_EnableSRAMRetention API. This increases
power consumption.
Its also possible to define I/O states using APIs:
HAL_PWREx_EnableGPIOPullUp, HAL_PWREx_EnableGPIOPullDown &
HAL_PWREx_EnablePullUpPullDownConfig
(+) Entry:
(++) The Standby mode is entered through HAL_PWR_EnterSTANDBYMode() API, by
setting SLEEPDEEP in Cortex control register.
(+) Exit:
(++) WKUP pin edge detection, RTC event (wakeup, alarm, timestamp),
tamper event (internal & external), LSE CSS detection, reset on
NRST pin, IWDG reset & BOR reset.
[..] Exiting Standby generates a power reset: Cortex is reset and execute
Reset handler vector, all registers in the Vcore domain are set to
their reset value. Registers outside the VCORE domain (RTC, WKUP, IWDG,
and Standby/Shutdown modes control) are not impacted.
*** Shutdown mode ***
======================
[..]
In Shutdown mode,
voltage regulator is disabled, all clocks are off except LSE, RRS bit is
cleared. SRAM and registers contents are lost except for backup domain
registers.
(+) Entry:
(++) The Shutdown mode is entered through HAL_PWREx_EnterSHUTDOWNMode() API,
by setting SLEEPDEEP in Cortex control register.
(+) Exit:
(++) WKUP pin edge detection, RTC event (wakeup, alarm, timestamp),
tamper event (internal & external), LSE CSS detection, reset on
NRST pin.
[..] Exiting Shutdown generates a brown out reset: Cortex is reset and execute
Reset handler vector, all registers are set to their reset value but ones
in backup domain.
@endverbatim
* @{
*/
/**
* @brief Enable access to the backup domain
* (RTC & TAMP registers, backup registers, RCC BDCR register).
* @note After reset, the backup domain is protected against
* possible unwanted write accesses. All RTC & TAMP registers (backup
* registers included) and RCC BDCR register are concerned.
* @retval None
*/
void HAL_PWR_EnableBkUpAccess(void)
{
SET_BIT(PWR->CR1, PWR_CR1_DBP);
}
/**
* @brief Disable access to the backup domain
* @retval None
*/
void HAL_PWR_DisableBkUpAccess(void)
{
CLEAR_BIT(PWR->CR1, PWR_CR1_DBP);
}
/**
* @brief Enable the WakeUp PINx functionality.
* @param WakeUpPinPolarity Specifies which Wake-Up pin to enable.
* This parameter can be one of the following legacy values which set
* the default polarity i.e. detection on high level (rising edge):
* @arg @ref PWR_WAKEUP_PIN1, PWR_WAKEUP_PIN2, PWR_WAKEUP_PIN3(*),
* PWR_WAKEUP_PIN4, PWR_WAKEUP_PIN5(*),PWR_WAKEUP_PIN6
* or one of the following value where the user can explicitly specify
* the enabled pin and the chosen polarity:
* @arg @ref PWR_WAKEUP_PIN1_HIGH or PWR_WAKEUP_PIN1_LOW
* @arg @ref PWR_WAKEUP_PIN2_HIGH or PWR_WAKEUP_PIN2_LOW
* @arg @ref PWR_WAKEUP_PIN3_HIGH or PWR_WAKEUP_PIN3_LOW (*)
* @arg @ref PWR_WAKEUP_PIN4_HIGH or PWR_WAKEUP_PIN4_LOW
* @arg @ref PWR_WAKEUP_PIN5_HIGH or PWR_WAKEUP_PIN5_LOW (*)
* @arg @ref PWR_WAKEUP_PIN6_HIGH or PWR_WAKEUP_PIN6_LOW
* @note PWR_WAKEUP_PINx and PWR_WAKEUP_PINx_HIGH are equivalent.
* @note (*) availability depends on devices
* @retval None
*/
void HAL_PWR_EnableWakeUpPin(uint32_t WakeUpPinPolarity)
{
assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinPolarity));
/* Specifies the Wake-Up pin polarity for the event detection
(rising or falling edge) */
MODIFY_REG(PWR->CR4, (PWR_CR4_WP & WakeUpPinPolarity), (WakeUpPinPolarity >> PWR_WUP_POLARITY_SHIFT));
/* Enable wake-up pin */
SET_BIT(PWR->CR3, (PWR_CR3_EWUP & WakeUpPinPolarity));
}
/**
* @brief Disable the WakeUp PINx functionality.
* @param WakeUpPinx Specifies the Power Wake-Up pin to disable.
* This parameter can be one of the following values:
* @arg @ref PWR_WAKEUP_PIN1, PWR_WAKEUP_PIN2,PWR_WAKEUP_PIN3(*),
* PWR_WAKEUP_PIN4,PWR_WAKEUP_PIN5(*),PWR_WAKEUP_PIN6
* @note (*) availability depends on devices
* @retval None
*/
void HAL_PWR_DisableWakeUpPin(uint32_t WakeUpPinx)
{
assert_param(IS_PWR_WAKEUP_PIN(WakeUpPinx));
CLEAR_BIT(PWR->CR3, (PWR_CR3_EWUP & WakeUpPinx));
}
/**
* @brief Enter Sleep or Low-power Sleep mode.
* @note In Sleep/Low-power Sleep mode, all I/O pins keep the same state as
* in Run mode.
* @param Regulator Specifies the regulator state in Sleep/Low-power Sleep
* mode. This parameter can be one of the following values:
* @arg @ref PWR_MAINREGULATOR_ON Sleep mode (regulator in main mode)
* @arg @ref PWR_LOWPOWERREGULATOR_ON Low-power Sleep mode (regulator
* in low-power mode)
* @note Low-power Sleep mode is entered from Low-power Run mode only. In
* case Regulator parameter is set to Low Power but MCU is in Run mode,
* we will first enter in Low-power Run mode. Therefore, user should
* take care that HCLK frequency is less than 2 MHz.
* @note When exiting Low-power Sleep mode, the MCU is in Low-power Run mode.
* To switch back to Run mode, user must call
* HAL_PWREx_DisableLowPowerRunMode() API.
* @param SLEEPEntry Specifies if Sleep mode is entered with WFI or WFE
* instruction. This parameter can be one of the following values:
* @arg @ref PWR_SLEEPENTRY_WFI enter Sleep or Low-power Sleep
* mode with WFI instruction
* @arg @ref PWR_SLEEPENTRY_WFE enter Sleep or Low-power Sleep
* mode with WFE instruction
* @note When WFI entry is used, tick interrupt have to be disabled if not
* desired as the interrupt wake up source.
* @retval None
*/
void HAL_PWR_EnterSLEEPMode(uint32_t Regulator, uint8_t SLEEPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_REGULATOR(Regulator));
assert_param(IS_PWR_SLEEP_ENTRY(SLEEPEntry));
/* Set Regulator parameter */
if (Regulator != PWR_MAINREGULATOR_ON)
{
/* If in run mode, first move to low-power run mode.
The system clock frequency must be below 2 MHz at this point. */
if ((PWR->SR2 & PWR_SR2_REGLPF) == 0x00u)
{
HAL_PWREx_EnableLowPowerRunMode();
}
}
else
{
/* If in low-power run mode at this point, exit it */
if ((PWR->SR2 & PWR_SR2_REGLPF) != 0x00u)
{
if (HAL_PWREx_DisableLowPowerRunMode() != HAL_OK)
{
return ;
}
}
}
/* Clear SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select SLEEP mode entry -------------------------------------------------*/
if (SLEEPEntry == PWR_SLEEPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
}
/**
* @brief Enter Stop mode
* @note This API is named HAL_PWR_EnterSTOPMode to ensure compatibility with
* legacy code running on devices where only "Stop mode" is mentioned
* with main or low power regulator ON.
* @note In Stop mode, all I/O pins keep the same state as in Run mode.
* @note All clocks in the VCORE domain are stopped; the PLL, the HSI and the
* HSE oscillators are disabled. Some peripherals with the wakeup
* capability can switch on the HSI to receive a frame, and switch off
* the HSI after receiving the frame if it is not a wakeup frame.
* SRAM and register contents are preserved.
* The BOR is available.
* The voltage regulator can be configured either in normal (Stop 0) or
* low-power mode (Stop 1).
* @note When exiting Stop 0 or Stop 1 mode by issuing an interrupt or a
* wakeup event, the HSI RC oscillator is selected as system clock
* @note When the voltage regulator operates in low power mode (Stop 1),
* an additional startup delay is incurred when waking up. By keeping
* the internal regulator ON during Stop mode (Stop 0), the consumption
* is higher although the startup time is reduced.
* @param Regulator Specifies the regulator state in Stop mode
* This parameter can be one of the following values:
* @arg @ref PWR_MAINREGULATOR_ON Stop 0 mode (main regulator ON)
* @arg @ref PWR_LOWPOWERREGULATOR_ON Stop 1 mode (low power
* regulator ON)
* @param STOPEntry Specifies Stop 0 or Stop 1 mode is entered with WFI or
* WFE instruction. This parameter can be one of the following values:
* @arg @ref PWR_STOPENTRY_WFI Enter Stop 0 or Stop 1 mode with WFI
* instruction.
* @arg @ref PWR_STOPENTRY_WFE Enter Stop 0 or Stop 1 mode with WFE
* instruction.
* @retval None
*/
void HAL_PWR_EnterSTOPMode(uint32_t Regulator, uint8_t STOPEntry)
{
/* Check the parameters */
assert_param(IS_PWR_REGULATOR(Regulator));
assert_param(IS_PWR_STOP_ENTRY(STOPEntry));
if (Regulator != PWR_MAINREGULATOR_ON)
{
/* Stop mode with Low-Power Regulator */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_STOP1);
}
else
{
/* Stop mode with Main Regulator */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_STOP0);
}
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* Select Stop mode entry --------------------------------------------------*/
if (STOPEntry == PWR_STOPENTRY_WFI)
{
/* Request Wait For Interrupt */
__WFI();
}
else
{
/* Request Wait For Event */
__SEV();
__WFE();
__WFE();
}
/* Reset SLEEPDEEP bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
}
/**
* @brief Enter Standby mode.
* @note In Standby mode, the PLL, the HSI and the HSE oscillators are
* switched off. The voltage regulator is disabled. SRAM and register
* contents are lost except for registers in the Backup domain and
* Standby circuitry. BOR is available.
* @note The I/Os can be configured either with a pull-up or pull-down or can
* be kept in analog state.
* HAL_PWREx_EnableGPIOPullUp() and HAL_PWREx_EnableGPIOPullDown()
* respectively enable Pull Up and PullDown state.
* HAL_PWREx_DisableGPIOPullUp() & HAL_PWREx_DisableGPIOPullDown()
* disable the same. These states are effective in Standby mode only if
* APC bit is set through HAL_PWREx_EnablePullUpPullDownConfig() API.
* @note Sram content can be kept setting RRS through HAL_PWREx_EnableSRAMRetention()
* @retval None
*/
void HAL_PWR_EnterSTANDBYMode(void)
{
/* Set Stand-by mode */
MODIFY_REG(PWR->CR1, PWR_CR1_LPMS, PWR_LOWPOWERMODE_STANDBY);
/* Set SLEEPDEEP bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPDEEP_Msk));
/* This option is used to ensure that store operations are completed */
#if defined ( __CC_ARM)
__force_stores();
#endif /* __CC_ARM */
/* Request Wait For Interrupt */
__WFI();
}
/**
* @brief Enable Sleep-On-Exit Cortex feature
* @note Set SLEEPONEXIT bit of SCR register. When this bit is set, the
* processor enters SLEEP or DEEPSLEEP mode when an interruption
* handling is over returning to thread mode. Setting this bit is
* useful when the processor is expected to run only on interruptions
* handling.
* @retval None
*/
void HAL_PWR_EnableSleepOnExit(void)
{
/* Set SLEEPONEXIT bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Disable Sleep-On-Exit Cortex feature
* @note Clear SLEEPONEXIT bit of SCR register. When this bit is set, the
* processor enters SLEEP or DEEPSLEEP mode when an interruption
* handling is over.
* @retval None
*/
void HAL_PWR_DisableSleepOnExit(void)
{
/* Clear SLEEPONEXIT bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SLEEPONEXIT_Msk));
}
/**
* @brief Enable Cortex Sev On Pending feature.
* @note Set SEVONPEND bit of SCR register. When this bit is set, enabled
* events and all interrupts, including disabled ones can wakeup
* processor from WFE.
* @retval None
*/
void HAL_PWR_EnableSEVOnPend(void)
{
/* Set SEVONPEND bit of Cortex System Control Register */
SET_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @brief Disable Cortex Sev On Pending feature.
* @note Clear SEVONPEND bit of SCR register. When this bit is clear, only
* enable interrupts or events can wakeup processor from WFE
* @retval None
*/
void HAL_PWR_DisableSEVOnPend(void)
{
/* Clear SEVONPEND bit of Cortex System Control Register */
CLEAR_BIT(SCB->SCR, ((uint32_t)SCB_SCR_SEVONPEND_Msk));
}
/**
* @}
*/
/**
* @}
*/
#endif /* HAL_PWR_MODULE_ENABLED */
/**
* @}
*/
/**
* @}
*/

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,367 @@
/**
******************************************************************************
* @file stm32g0xx_ll_dma.c
* @author MCD Application Team
* @brief DMA LL module driver.
******************************************************************************
* @attention
*
* Copyright (c) 2018 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
#if defined(USE_FULL_LL_DRIVER)
/* Includes ------------------------------------------------------------------*/
#include "stm32g0xx_ll_dma.h"
#include "stm32g0xx_ll_bus.h"
#ifdef USE_FULL_ASSERT
#include "stm32_assert.h"
#else
#define assert_param(expr) ((void)0U)
#endif /* USE_FULL_ASSERT */
/** @addtogroup STM32G0xx_LL_Driver
* @{
*/
#if defined (DMA1) || defined (DMA2)
/** @defgroup DMA_LL DMA
* @{
*/
/* Private types -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private constants ---------------------------------------------------------*/
/* Private macros ------------------------------------------------------------*/
/** @addtogroup DMA_LL_Private_Macros
* @{
*/
#define IS_LL_DMA_DIRECTION(__VALUE__) (((__VALUE__) == LL_DMA_DIRECTION_PERIPH_TO_MEMORY) || \
((__VALUE__) == LL_DMA_DIRECTION_MEMORY_TO_PERIPH) || \
((__VALUE__) == LL_DMA_DIRECTION_MEMORY_TO_MEMORY))
#define IS_LL_DMA_MODE(__VALUE__) (((__VALUE__) == LL_DMA_MODE_NORMAL) || \
((__VALUE__) == LL_DMA_MODE_CIRCULAR))
#define IS_LL_DMA_PERIPHINCMODE(__VALUE__) (((__VALUE__) == LL_DMA_PERIPH_INCREMENT) || \
((__VALUE__) == LL_DMA_PERIPH_NOINCREMENT))
#define IS_LL_DMA_MEMORYINCMODE(__VALUE__) (((__VALUE__) == LL_DMA_MEMORY_INCREMENT) || \
((__VALUE__) == LL_DMA_MEMORY_NOINCREMENT))
#define IS_LL_DMA_PERIPHDATASIZE(__VALUE__) (((__VALUE__) == LL_DMA_PDATAALIGN_BYTE) || \
((__VALUE__) == LL_DMA_PDATAALIGN_HALFWORD) || \
((__VALUE__) == LL_DMA_PDATAALIGN_WORD))
#define IS_LL_DMA_MEMORYDATASIZE(__VALUE__) (((__VALUE__) == LL_DMA_MDATAALIGN_BYTE) || \
((__VALUE__) == LL_DMA_MDATAALIGN_HALFWORD) || \
((__VALUE__) == LL_DMA_MDATAALIGN_WORD))
#define IS_LL_DMA_NBDATA(__VALUE__) ((__VALUE__) <= 0x0000FFFFU)
#define IS_LL_DMA_PERIPHREQUEST(__VALUE__) ((__VALUE__) <= LL_DMAMUX_MAX_REQ)
#define IS_LL_DMA_PRIORITY(__VALUE__) (((__VALUE__) == LL_DMA_PRIORITY_LOW) || \
((__VALUE__) == LL_DMA_PRIORITY_MEDIUM) || \
((__VALUE__) == LL_DMA_PRIORITY_HIGH) || \
((__VALUE__) == LL_DMA_PRIORITY_VERYHIGH))
#if defined(DMA2)
#define IS_LL_DMA_ALL_CHANNEL_INSTANCE(INSTANCE, CHANNEL) ((((INSTANCE) == DMA1) && \
(((CHANNEL) == LL_DMA_CHANNEL_1) || \
((CHANNEL) == LL_DMA_CHANNEL_2) || \
((CHANNEL) == LL_DMA_CHANNEL_3) || \
((CHANNEL) == LL_DMA_CHANNEL_4) || \
((CHANNEL) == LL_DMA_CHANNEL_5) || \
((CHANNEL) == LL_DMA_CHANNEL_6) || \
((CHANNEL) == LL_DMA_CHANNEL_7))) || \
(((INSTANCE) == DMA2) && \
(((CHANNEL) == LL_DMA_CHANNEL_1) || \
((CHANNEL) == LL_DMA_CHANNEL_2) || \
((CHANNEL) == LL_DMA_CHANNEL_3) || \
((CHANNEL) == LL_DMA_CHANNEL_4) || \
((CHANNEL) == LL_DMA_CHANNEL_5))))
#else /* DMA1 */
#if defined(DMA1_Channel7)
#define IS_LL_DMA_ALL_CHANNEL_INSTANCE(INSTANCE, CHANNEL) ((((INSTANCE) == DMA1) && \
(((CHANNEL) == LL_DMA_CHANNEL_1) || \
((CHANNEL) == LL_DMA_CHANNEL_2) || \
((CHANNEL) == LL_DMA_CHANNEL_3) || \
((CHANNEL) == LL_DMA_CHANNEL_4) || \
((CHANNEL) == LL_DMA_CHANNEL_5) || \
((CHANNEL) == LL_DMA_CHANNEL_6) || \
((CHANNEL) == LL_DMA_CHANNEL_7))))
#else
#define IS_LL_DMA_ALL_CHANNEL_INSTANCE(INSTANCE, CHANNEL) ((((INSTANCE) == DMA1) && \
(((CHANNEL) == LL_DMA_CHANNEL_1) || \
((CHANNEL) == LL_DMA_CHANNEL_2) || \
((CHANNEL) == LL_DMA_CHANNEL_3) || \
((CHANNEL) == LL_DMA_CHANNEL_4) || \
((CHANNEL) == LL_DMA_CHANNEL_5))))
#endif /* DMA1_Channel8 */
#endif /* DMA2 */
/**
* @}
*/
/* Private function prototypes -----------------------------------------------*/
/* Exported functions --------------------------------------------------------*/
/** @addtogroup DMA_LL_Exported_Functions
* @{
*/
/** @addtogroup DMA_LL_EF_Init
* @{
*/
/**
* @brief De-initialize the DMA registers to their default reset values.
* @param DMAx DMAx Instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_DMA_CHANNEL_1
* @arg @ref LL_DMA_CHANNEL_2
* @arg @ref LL_DMA_CHANNEL_3
* @arg @ref LL_DMA_CHANNEL_4
* @arg @ref LL_DMA_CHANNEL_5
* @arg @ref LL_DMA_CHANNEL_6
* @arg @ref LL_DMA_CHANNEL_7
* @arg @ref LL_DMA_CHANNEL_ALL
* @retval An ErrorStatus enumeration value:
* - SUCCESS: DMA registers are de-initialized
* - ERROR: DMA registers are not de-initialized
*/
ErrorStatus LL_DMA_DeInit(DMA_TypeDef *DMAx, uint32_t Channel)
{
ErrorStatus status = SUCCESS;
/* Check the DMA Instance DMAx and Channel parameters*/
assert_param(IS_LL_DMA_ALL_CHANNEL_INSTANCE(DMAx, Channel) || (Channel == LL_DMA_CHANNEL_ALL));
if (Channel == LL_DMA_CHANNEL_ALL)
{
if (DMAx == DMA1)
{
/* Force reset of DMA clock */
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_DMA1);
/* Release reset of DMA clock */
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_DMA1);
}
#if defined(DMA2)
else if (DMAx == DMA2)
{
/* Force reset of DMA clock */
LL_AHB1_GRP1_ForceReset(LL_AHB1_GRP1_PERIPH_DMA2);
/* Release reset of DMA clock */
LL_AHB1_GRP1_ReleaseReset(LL_AHB1_GRP1_PERIPH_DMA2);
}
#endif /* DMA2 */
else
{
status = ERROR;
}
}
else
{
DMA_Channel_TypeDef *tmp;
tmp = (DMA_Channel_TypeDef *)(__LL_DMA_GET_CHANNEL_INSTANCE(DMAx, Channel));
/* Disable the selected DMAx_Channely */
CLEAR_BIT(tmp->CCR, DMA_CCR_EN);
/* Reset DMAx_Channely control register */
WRITE_REG(tmp->CCR, 0U);
/* Reset DMAx_Channely remaining bytes register */
WRITE_REG(tmp->CNDTR, 0U);
/* Reset DMAx_Channely peripheral address register */
WRITE_REG(tmp->CPAR, 0U);
/* Reset DMAx_Channely memory address register */
WRITE_REG(tmp->CMAR, 0U);
/* Reset Request register field for DMAx Channel */
LL_DMA_SetPeriphRequest(DMAx, Channel, LL_DMAMUX_REQ_MEM2MEM);
if (Channel == LL_DMA_CHANNEL_1)
{
/* Reset interrupt pending bits for DMAx Channel1 */
LL_DMA_ClearFlag_GI1(DMAx);
}
else if (Channel == LL_DMA_CHANNEL_2)
{
/* Reset interrupt pending bits for DMAx Channel2 */
LL_DMA_ClearFlag_GI2(DMAx);
}
else if (Channel == LL_DMA_CHANNEL_3)
{
/* Reset interrupt pending bits for DMAx Channel3 */
LL_DMA_ClearFlag_GI3(DMAx);
}
else if (Channel == LL_DMA_CHANNEL_4)
{
/* Reset interrupt pending bits for DMAx Channel4 */
LL_DMA_ClearFlag_GI4(DMAx);
}
else if (Channel == LL_DMA_CHANNEL_5)
{
/* Reset interrupt pending bits for DMAx Channel5 */
LL_DMA_ClearFlag_GI5(DMAx);
}
#if defined(DMA1_Channel6)
else if (Channel == LL_DMA_CHANNEL_6)
{
/* Reset interrupt pending bits for DMAx Channel6 */
LL_DMA_ClearFlag_GI6(DMAx);
}
#endif /* DMA1_Channel6 */
#if defined(DMA1_Channel7)
else if (Channel == LL_DMA_CHANNEL_7)
{
/* Reset interrupt pending bits for DMAx Channel7 */
LL_DMA_ClearFlag_GI7(DMAx);
}
#endif /* DMA1_Channel7 */
else
{
status = ERROR;
}
}
return status;
}
/**
* @brief Initialize the DMA registers according to the specified parameters in DMA_InitStruct.
* @note To convert DMAx_Channely Instance to DMAx Instance and Channely, use helper macros :
* @arg @ref __LL_DMA_GET_INSTANCE
* @arg @ref __LL_DMA_GET_CHANNEL
* @param DMAx DMAx Instance
* @param Channel This parameter can be one of the following values:
* @arg @ref LL_DMA_CHANNEL_1
* @arg @ref LL_DMA_CHANNEL_2
* @arg @ref LL_DMA_CHANNEL_3
* @arg @ref LL_DMA_CHANNEL_4
* @arg @ref LL_DMA_CHANNEL_5
* @arg @ref LL_DMA_CHANNEL_6
* @arg @ref LL_DMA_CHANNEL_7
* @param DMA_InitStruct pointer to a @ref LL_DMA_InitTypeDef structure.
* @retval An ErrorStatus enumeration value:
* - SUCCESS: DMA registers are initialized
* - ERROR: Not applicable
*/
ErrorStatus LL_DMA_Init(DMA_TypeDef *DMAx, uint32_t Channel, LL_DMA_InitTypeDef *DMA_InitStruct)
{
/* Check the DMA Instance DMAx and Channel parameters*/
assert_param(IS_LL_DMA_ALL_CHANNEL_INSTANCE(DMAx, Channel));
/* Check the DMA parameters from DMA_InitStruct */
assert_param(IS_LL_DMA_DIRECTION(DMA_InitStruct->Direction));
assert_param(IS_LL_DMA_MODE(DMA_InitStruct->Mode));
assert_param(IS_LL_DMA_PERIPHINCMODE(DMA_InitStruct->PeriphOrM2MSrcIncMode));
assert_param(IS_LL_DMA_MEMORYINCMODE(DMA_InitStruct->MemoryOrM2MDstIncMode));
assert_param(IS_LL_DMA_PERIPHDATASIZE(DMA_InitStruct->PeriphOrM2MSrcDataSize));
assert_param(IS_LL_DMA_MEMORYDATASIZE(DMA_InitStruct->MemoryOrM2MDstDataSize));
assert_param(IS_LL_DMA_NBDATA(DMA_InitStruct->NbData));
assert_param(IS_LL_DMA_PERIPHREQUEST(DMA_InitStruct->PeriphRequest));
assert_param(IS_LL_DMA_PRIORITY(DMA_InitStruct->Priority));
/*---------------------------- DMAx CCR Configuration ------------------------
* Configure DMAx_Channely: data transfer direction, data transfer mode,
* peripheral and memory increment mode,
* data size alignment and priority level with parameters :
* - Direction: DMA_CCR_DIR and DMA_CCR_MEM2MEM bits
* - Mode: DMA_CCR_CIRC bit
* - PeriphOrM2MSrcIncMode: DMA_CCR_PINC bit
* - MemoryOrM2MDstIncMode: DMA_CCR_MINC bit
* - PeriphOrM2MSrcDataSize: DMA_CCR_PSIZE[1:0] bits
* - MemoryOrM2MDstDataSize: DMA_CCR_MSIZE[1:0] bits
* - Priority: DMA_CCR_PL[1:0] bits
*/
LL_DMA_ConfigTransfer(DMAx, Channel, DMA_InitStruct->Direction | \
DMA_InitStruct->Mode | \
DMA_InitStruct->PeriphOrM2MSrcIncMode | \
DMA_InitStruct->MemoryOrM2MDstIncMode | \
DMA_InitStruct->PeriphOrM2MSrcDataSize | \
DMA_InitStruct->MemoryOrM2MDstDataSize | \
DMA_InitStruct->Priority);
/*-------------------------- DMAx CMAR Configuration -------------------------
* Configure the memory or destination base address with parameter :
* - MemoryOrM2MDstAddress: DMA_CMAR_MA[31:0] bits
*/
LL_DMA_SetMemoryAddress(DMAx, Channel, DMA_InitStruct->MemoryOrM2MDstAddress);
/*-------------------------- DMAx CPAR Configuration -------------------------
* Configure the peripheral or source base address with parameter :
* - PeriphOrM2MSrcAddress: DMA_CPAR_PA[31:0] bits
*/
LL_DMA_SetPeriphAddress(DMAx, Channel, DMA_InitStruct->PeriphOrM2MSrcAddress);
/*--------------------------- DMAx CNDTR Configuration -----------------------
* Configure the peripheral base address with parameter :
* - NbData: DMA_CNDTR_NDT[15:0] bits
*/
LL_DMA_SetDataLength(DMAx, Channel, DMA_InitStruct->NbData);
/*--------------------------- DMAMUXx CCR Configuration ----------------------
* Configure the DMA request for DMA Channels on DMAMUX Channel x with parameter :
* - PeriphRequest: DMA_CxCR[7:0] bits
*/
LL_DMA_SetPeriphRequest(DMAx, Channel, DMA_InitStruct->PeriphRequest);
return SUCCESS;
}
/**
* @brief Set each @ref LL_DMA_InitTypeDef field to default value.
* @param DMA_InitStruct Pointer to a @ref LL_DMA_InitTypeDef structure.
* @retval None
*/
void LL_DMA_StructInit(LL_DMA_InitTypeDef *DMA_InitStruct)
{
/* Set DMA_InitStruct fields to default values */
DMA_InitStruct->PeriphOrM2MSrcAddress = 0x00000000U;
DMA_InitStruct->MemoryOrM2MDstAddress = 0x00000000U;
DMA_InitStruct->Direction = LL_DMA_DIRECTION_PERIPH_TO_MEMORY;
DMA_InitStruct->Mode = LL_DMA_MODE_NORMAL;
DMA_InitStruct->PeriphOrM2MSrcIncMode = LL_DMA_PERIPH_NOINCREMENT;
DMA_InitStruct->MemoryOrM2MDstIncMode = LL_DMA_MEMORY_NOINCREMENT;
DMA_InitStruct->PeriphOrM2MSrcDataSize = LL_DMA_PDATAALIGN_BYTE;
DMA_InitStruct->MemoryOrM2MDstDataSize = LL_DMA_MDATAALIGN_BYTE;
DMA_InitStruct->NbData = 0x00000000U;
DMA_InitStruct->PeriphRequest = LL_DMAMUX_REQ_MEM2MEM;
DMA_InitStruct->Priority = LL_DMA_PRIORITY_LOW;
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
#endif /* DMA1 || DMA2 */
/**
* @}
*/
#endif /* USE_FULL_LL_DRIVER */

File diff suppressed because it is too large Load Diff